Skip to main content
Log in

Hydrogenolysis of a γ-Acetylated Lignin Model Compound with a Ruthenium–Xantphos Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic hydrogenolysis of a γ-acetylated dimer lignin model compound is effected using a Ru–xantphos catalyst. Mechanistic investigations show mono-aryl degradation products are generated from the β-O-4 substrate as well as a terminal alkene ketone dimer (bis-aryl) that further dimerizes to a tetra-aryl product. Preliminary results using an acetylated kraft lignin as a substrate are also discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2

Similar content being viewed by others

References

  1. Thilakaratne R, Brown T, Li YH, Hu GP, Brown R (2014) Green Chem 16:627

    Article  CAS  Google Scholar 

  2. Saha B, Abu-Omar MM (2014) Green Chem 16:24

    Article  CAS  Google Scholar 

  3. Osatiashtiani A, Lee AF, Brown DR, Melero JA, Morales G, Wilson K (2014) Catal Sci Technol 4:333

    Article  CAS  Google Scholar 

  4. Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS (2013) J Am Chem Soc 135:6415

    Article  CAS  Google Scholar 

  5. Heracleous E, Lemonidou A (2013) Platinum Met Rev 57:101

    Article  Google Scholar 

  6. Hanson SK, Wu R, Silks LAP (2012) Angew Chem. Int Ed 51:3410

    Article  CAS  Google Scholar 

  7. Azadi P, Carrasquillo-Flores R, Pagan-Torres YJ, Gurbuz EI, Farnood R, Dumesic JA (2012) Green Chem 14:1573

    Article  CAS  Google Scholar 

  8. Collinson SR, Thielemans W (2010) Coord Chem Rev 254:1854

    Article  CAS  Google Scholar 

  9. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552

    Article  CAS  Google Scholar 

  10. Saito T, Brown RH, Hunt MA, Pickel DL, Pickel JM, Messman JM, Baker FS, Keller M, Naskar AK (2012) Green Chem 14:3295

    Article  CAS  Google Scholar 

  11. Sergeev AG, Hartwig JF (2011) Science 332:439

    Article  CAS  Google Scholar 

  12. Wu A, Patrick BO, Chung E, James BR (2012) Dalton Trans 41:11093

    Article  CAS  Google Scholar 

  13. Nichols JM, Bishop LM, Bergman RG, Ellman JA (2010) J Am Chem Soc 132:12554

    Article  CAS  Google Scholar 

  14. Yang Q, Shi J, Lin L, Peng L, Zhuang J (2012) Bioresour Technol 123:49

    Article  CAS  Google Scholar 

  15. Shimizu S, Yokoyama T, Akiyama T, Matsumoto Y (2012) J Agric Food Chem 60:6471

    Article  CAS  Google Scholar 

  16. El-Zawawy WK, Ibrahim MM, Belgacem MN, Dufresne A (2011) Mater Chem Phys 131:348

    Article  CAS  Google Scholar 

  17. Kim YS, Chang H-M, Kadla JF (2008) Holzforschung 62:38

    CAS  Google Scholar 

  18. Del Río JC, Gutiérrez A, Martínez ÁT (2004) Rapid Commun Mass Spectrom 18:1181

    Article  Google Scholar 

  19. Ralph J (1996) J Nat Prod 59:341

    Article  CAS  Google Scholar 

  20. Del Río JC, Marques G, Rencoret J, Martínez ÁT, Gutiérrez A (2007) J Agric Food Chem 55:5461

    Article  Google Scholar 

  21. Lu F, Ralph J (2002) Chem Commun 1:90–91

  22. Lu F, Ralph J (1996) Holzforschung 50:360

    Article  CAS  Google Scholar 

  23. Zhang L, Gellerstedt G (2007) Magn Reson Chem 45:37

    Article  CAS  Google Scholar 

  24. Capanema EA, Balakshin MY, Kadla JF (2005) J Agric Food Chem 53:9639

    Article  CAS  Google Scholar 

  25. Qu C, Kishimoto T, Kishino M, Hamada M, Nakajima N (2011) J Agric Food Chem 59:5382

    Article  CAS  Google Scholar 

  26. Nimz HH, Lüdemann HD (1976) Holzforschung 30:33

    Article  CAS  Google Scholar 

  27. Sonoda T, Ona T, Yokoi H, Ishida Y, Ohtani H, Tsuge S (2001) Anal Chem 73:5429

    Article  CAS  Google Scholar 

  28. Obataya E, Shibutani S, Minato K (2007) J Wood Sci 53:408

    Article  CAS  Google Scholar 

  29. Mörck R, Kringstad Knut P (1985) Holzforschung 39:109.

  30. Pu Y, Ragauskas AJ (2005) Can J Chem 83:2132

    Article  CAS  Google Scholar 

  31. Pizzi A, Zhou X, Navarrete P, Segovia C, Mansouri HR, Placentia Pena MI, Pichelin F (2013) J Adhes Sci Technol 27:252.

  32. Hoeger IC, Filpponen I, Martin-Sampedro R, Johansson L-S, Österberg M, Laine J, Kelley S, Rojas OJ (2012) Biomacromolecules 13:3228

    Article  CAS  Google Scholar 

  33. Qian Y, Deng Y, Qiu X, Li H, Yang D (2014) Green Chem 16:2156

    Article  CAS  Google Scholar 

  34. Ghosh I, Jain RK, Glasser WG (1999) J Appl Polym Sci 74:448

    Article  CAS  Google Scholar 

  35. Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) Organometallics 29:2176

    Article  CAS  Google Scholar 

  36. Son S, Toste FD (2010) Angew Chem. Int Ed 49:3791

    Article  CAS  Google Scholar 

  37. Cho DW, Parthasarathi R, Pimentel AS, Maestas GD, Park HJ, Yoon UC, Dunaway-Mariano D, Gnanakaran S, Langan P, Mariano PS (2010) J Org Chem 75:6549

    Article  CAS  Google Scholar 

  38. Huo W, Li W, Zhang M, Fan W, Chang H-M, Jameel H (2014) Catal Lett 144:1159

  39. Baird IR, Rettig SJ, James BR, Skov KA (1998) Can J Chem 76:1379

    Article  CAS  Google Scholar 

  40. James BR, Addison AW, Cairns M, Dolphin D, Farrell NP, Paulson DR, Walker S (1979) In: Tsutsui M (ed) Fundamental research in homogeneous catalysis, ch. 50. Springer, New York

  41. Chow BC, Cohen IA (1971) Bioinorg Chem 1:57

    Article  CAS  Google Scholar 

  42. Enoki A, Goldsby G, Gold M (1981) Arch Microbiol 129:141

    Article  CAS  Google Scholar 

  43. Lauzon JMP, James BR Unpublished results. A summary of the findings is available in Table S3 in the ESI

Download references

Acknowledgments

We thank the NSERC Lignoworks Network for funding, Weyerhaeuser Co (Seattle, WA, USA) for supplying the acetylated lignin, and a reviewer for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. James.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3,163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, A., Lauzon, J.M. & James, B.R. Hydrogenolysis of a γ-Acetylated Lignin Model Compound with a Ruthenium–Xantphos Catalyst. Catal Lett 145, 511–518 (2015). https://doi.org/10.1007/s10562-014-1401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1401-7

Keywords

Navigation