Skip to main content
Log in

The Influence of Pd Particles Distribution Position on Pd/CNTs Catalyst for Acetylene Selective Hydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The structure and catalytic properties of Pd catalyst supported on the outer surface or inner surface of carbon nanotubes (CNTs) have been investigated by using various experimental techniques combined with acetylene selective hydrogenation tests. It has been shown that Pd/CNTs-out catalyst exhibits higher ethylene selectivity than Pd/CNTs-in catalyst for acetylene selective hydrogenation. The electron interaction between CNTs support and palladium particles is responsible for higher ethylene selectivity over Pd/CNTs-out catalyst.

Graphical Abstract

It is found that Pd/CNTs-out catalyst exhibits higher ethylene selectivity than Pd/CNTs-in catalyst for acetylene selective hydrogenation. The electron interaction between CNTs support and palladium particles is responsible for higher ethylene selectivity over Pd/CNTs-out catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andrzej Borodzinski GCB (2008) Catal Rev 50:379

  2. Kontapakdee K, Panpranot J, Praserthdam P (2007) Catal Commun 8:2166

    Article  CAS  Google Scholar 

  3. Huang DC, Chang KH, Pong WF, Tseng PK, Hung KJ, Huang WF (1998) Catal Lett 53:155

    Article  CAS  Google Scholar 

  4. Kang JH, Shin EW, Kim WJ, Park JD, Moon SH (2002) J Catal 208:310

    Article  CAS  Google Scholar 

  5. Huang W, McCormick JR, Lobo RF, Chen JG (2007) J Catal 246:40

    Article  CAS  Google Scholar 

  6. Zhang AM, Dong JL, Xu QH, Rhee HK, Li XL (2004) Catal Today 93–95:347

    Article  Google Scholar 

  7. Tessonnier JP, Pesant L, Ehret G, Ledoux MJ, Pham-Huu C (2005) Appl Catal A 288:203

    Article  CAS  Google Scholar 

  8. Yoon B, Pan HB, Wai CM (2009) J Phys Chem C 113:1520

    Article  CAS  Google Scholar 

  9. Yoon B, Wai CM (2005) J Am Chem Soc 127:17174

    Article  CAS  Google Scholar 

  10. Bazzazzadegan H, Kazemeini M, Rashidi AM (2011) Appl Catal A 399:184

    Article  CAS  Google Scholar 

  11. Esmaeili E, Mortazavi Y, Khodadadi AA, Rashidi AM, Rashidzadeh M (2012) Appl Surf Sci 263:513

    Article  CAS  Google Scholar 

  12. Vu H, Goncalves F, Philippe R, Lamouroux E, Corrias M, Kihn Y, Plee D, Kalck P, Serp P (2006) J Catal 240:18

    Article  CAS  Google Scholar 

  13. Wang D, Yang GH, Ma QX, Wu MB, Tan YS, Yoneyama Y, Tsubaki N (2012) ACS Catal 2:1958

    Article  CAS  Google Scholar 

  14. Choi HC, Shim M, Bangsaruntip S, Dai HJ (2002) J Am Chem Soc 124:9058

    Article  CAS  Google Scholar 

  15. Chen W, Fan ZL, Pan XL, Bao XH (2008) J Am Chem Soc 130:9414

    Article  CAS  Google Scholar 

  16. Blase X, Benedict LX, Shirley EL, Louie SG (1994) Phys Rev Lett 72:1878

    Article  CAS  Google Scholar 

  17. Ugarte D, Chatelain A, de Heer WA (1996) Science 274:1897

  18. Chen W, Pan XL, Bao XH (2007) J Am Chem Soc 129:7421

    Article  CAS  Google Scholar 

  19. Liu YG, Zhang J, Hou WH, Zhu JJ (2008) Nanotechnology 19:135707

    Article  Google Scholar 

  20. Chinayon S, Mekasuwandumrong O, Praserthdam P, Panpranot J (2008) Catal Commun 9:2297

    Article  CAS  Google Scholar 

  21. Kumar MK, Ramaprabhu S (2007) Int J Hydrogen Energy 32:2518

    Article  CAS  Google Scholar 

  22. Ruta M, Semagina N, Kiwi-Minsker L (2008) J Phys Chem C 112:13635

    Article  CAS  Google Scholar 

  23. Aduriz HR, Bodnariuk P, Dennehy M, Gigola CE (1990) Appl Catal 58:227

    Article  CAS  Google Scholar 

  24. Osswald J, Kovnir K, Armbruster M, Giedigkeit R, Jentoft RE, Wild U, Grin Y, Schlogl R (2008) J Catal 258:219

    Article  CAS  Google Scholar 

  25. Hermans S, Wenkin M, Devillers M (1998) J Mol Catal A 136:59

    Article  CAS  Google Scholar 

  26. Sales EA, Benhamida B, Caizergues V, Lagier JP, Fievet F, Bozon-Verduraz F (1998) Appl Catal A 172:273

    Article  Google Scholar 

  27. Lu JZ, Yang LJ, Xu BL, Wu Q, Zhang D, Yuan SJ, Zhai Y, Wang XZ, Fan YN, Hu Z (2014) ACS Catal 4:613

    Article  CAS  Google Scholar 

  28. Tessonnier JP, Ersen O, Weiberg G, Pham-Huu C, Su DS, Schlogl R (2009) ACS Nano 3:2081

    Article  CAS  Google Scholar 

  29. Choi HC, Shim M, Bangsaruntip S, Dai HJ (2002) J Am Chem Soc 124:9058

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by Natural Science Foundation of Jiangsu Province (BK2010304) and NSFC (20833002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bolian Xu or Yining Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1008 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Xu, B., Wang, X. et al. The Influence of Pd Particles Distribution Position on Pd/CNTs Catalyst for Acetylene Selective Hydrogenation. Catal Lett 144, 2198–2203 (2014). https://doi.org/10.1007/s10562-014-1388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1388-0

Keywords

Navigation