Skip to main content

Advertisement

Log in

Trends in the Hydrodeoxygenation Activity and Selectivity of Transition Metal Surfaces

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This paper reports the use of a combination of density functional theory and microkinetic modelling to establish trends in the hydrodeoxygenation rates and selectivites of transition metal surfaces. Biomass and biomass-derived chemicals often contain large fractions of oxygenates. Removal of the oxygen through hydrotreating represents one strategy for producing commodity chemicals from these renewable materials. Using the model developed in this paper, we predict ethylene glycol hydrodeoxygenation selectivities for transition metals that are consistent with those reported in the literature. Furthermore, the insights discussed in this paper present a framework for designing catalytic materials for facilitating these conversions efficiently.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Department of Energy

  2. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) Science 311:484–489

    Article  CAS  Google Scholar 

  3. Rass-Hansen J, Falsig H, Jorgensen B, Christensen CH (2007) J Chem Technol Biotechnol 82:329–333

    Article  CAS  Google Scholar 

  4. Alonso DM, Wettstein SG, Dumesic JA (2012) Chem Soc Rev 41:8075–8098

    Article  CAS  Google Scholar 

  5. Guo N, Caratzoulas S, Doren DJ, Sandler SI, Vlachos DG (2012) Energy Environ Sci 5:6703–6716

    Article  CAS  Google Scholar 

  6. Mpourmpakis G, Vlachos DG (2011) MRS Bull 36:211–215

    Article  CAS  Google Scholar 

  7. Vlachos DG, Chen JG, Gorte RJ, Huber GW, Tsapatsis M (2010) Catal Lett 140:77–84

    Article  CAS  Google Scholar 

  8. Salciccioli M, Yu W, Barteau MA, Chen JG, Vlachos DG (2011) J Am Chem Soc 133:7996–8004

    Article  CAS  Google Scholar 

  9. Bridgwater AV, Meier D, Radlein D (1999) Org. Geochem. 30:1479–1493

    Article  CAS  Google Scholar 

  10. Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen KG, Jensen AD (2011) Appl Catal A 407:1–19

    Article  CAS  Google Scholar 

  11. Stottlemyer AL, Ren H, Chen JG (2009) Surf Sci 603:2630–2638

    Article  CAS  Google Scholar 

  12. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  13. Mortensen PM, Grunwaldt J-D, Jensen PA, Jensen AD (2013) ACS Catal 3:1774–1785

    Article  CAS  Google Scholar 

  14. Lee CR, Yoon JS, Suh Y-W, Choi J-W, Ha J-M, Suh DJ, Park Y-K (2012) Catal Commun 17:54–58

    Article  CAS  Google Scholar 

  15. Wei H, Gomez C, Liu J, Guo N, Wu T, Lobo-Lapidus R, Marshall CL, Miller JT, Meyer RJ (2013) J Catal 298:18–26

    Article  CAS  Google Scholar 

  16. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) J Catal 224:206–217

    Article  CAS  Google Scholar 

  17. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:016105

    Article  CAS  Google Scholar 

  18. Ferrin P, Nilekar AU, Greeley J, Mavrikakis M, Rossmeisl J (2008) Surf Sci 602:3424–3431

    Article  CAS  Google Scholar 

  19. Jones G, Studt F, Abild-Pedersen F, Nørskov JK, Bligaard T (2011) Chem Eng Sci 66:6318–6323

    Article  CAS  Google Scholar 

  20. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275–278

    Article  Google Scholar 

  21. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Proc Natl Acad Sci USA 108:937–943

    Article  Google Scholar 

  22. Michaelides A, Liu ZP, Zhang CJ, Alavi A, King DA, Hu P (2003) J Am Chem Soc 125:3704–3705

    Article  CAS  Google Scholar 

  23. Pallassana V, Neurock M (2000) J Catal 191:301–317

    Article  CAS  Google Scholar 

  24. Wang S, Petzold V, Tripkovic V, Kleis J, Howalt JG, Skúlason E, Fernández EM, Hvolbæk B, Jones G, Toftelund A, Falsig H, Björketun ME, Studt F, Abild-Pedersen F, Rossmeisl J, Nørskov JK, Bligaard T (2011) Phys Chem Chem Phys 13:20760–20765

    Article  CAS  Google Scholar 

  25. Wang S, Temel B, Shen J, Jones G, Grabow LC, Studt F, Bligaard T, Abild-Pedersen F, Christensen CH, Nørskov JK (2011) Catal Lett 141:370–373

    Article  CAS  Google Scholar 

  26. Mohr C, Hofmeister H, Claus P (2003) J Catal 213:86–94

    Article  CAS  Google Scholar 

  27. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) Appl Catal B 56:171–186

    Article  CAS  Google Scholar 

  28. Kandoi S, Greeley J, Simonetti D, Shabaker J, Dumesic JA, Mavrikakis M (2011) J Phys Chem C 115:961–971

    Article  CAS  Google Scholar 

  29. Li N, Huber GW (2010) J. Catal. 270:48–59

    Article  CAS  Google Scholar 

  30. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Appl Catal B Env 43:13–26

    Article  CAS  Google Scholar 

  31. Goodman DW (1990) Ultramicroscopy 34:1–9

    Article  CAS  Google Scholar 

  32. Shabaker JW, Dumesic JA (2004) Ind Eng Chem Res 43:3105–3112

    Article  CAS  Google Scholar 

  33. Foster AJ, Do PTM, Lobo RF (2012) Top Catal 55:118–128

    Article  CAS  Google Scholar 

  34. Venderbosch RH, Ardiyanti AR, Wildschut J, Oasmaa A, Heeres HJ (2010) J Chem Technol Biotechnol 85:674–686

    Article  CAS  Google Scholar 

  35. Yakovlev VA, Khromova SA, Sherstyuk OV, Dundich VO, Ermakov EY, Novopashina VM, Lebedev MY, Bulavchenko O, Parmon VN (2009) Catal Today 144:362–366

    Article  CAS  Google Scholar 

  36. Ardiyanti AR, Khromova SA, Venderbosch RH, Yakovlev VA, Heeres HJ (2012) Appl Catal B 117–118:105–117

    Article  Google Scholar 

  37. Benson SW (1968) Thermochemical kinetics: methods for estimation of thermochemical data and rate parameters. Wiley, New York

    Google Scholar 

  38. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys Condens Matter 21:395502

  39. Wellendorff J, Lundgaard KT, Mogelhoj A, Petzold V, Landis DD, Norskov JK, Bligaard T, Jacobsen KW (2012) Phys Rev B 85:235149

  40. Kresse G, Furthmuller J (1996) Comp Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  41. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

  42. Johansson F (2010) 0.14 ed. http://code.google.com/p/mpmath/

Download references

Acknowledgments

Support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences to the SUNCAT Center for Interface Science and Catalysis is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Studt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 446 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lausche, A.C., Falsig, H., Jensen, A.D. et al. Trends in the Hydrodeoxygenation Activity and Selectivity of Transition Metal Surfaces. Catal Lett 144, 1968–1972 (2014). https://doi.org/10.1007/s10562-014-1352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1352-z

Keywords

Navigation