Skip to main content
Log in

Kinetics and Mechanisms of Homogeneous Catalytic Reactions. Part 12. Hydroalcoxycarbonylation of 1-Hexene Using Palladium/Triphenylphosphine Systems as Catalyst Precursors

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Systems prepared in situ by addition of n equivalents of triphenylphosphine to palladium dichloride in the presence of m equivalents of para-toluenesulfonic acid (TSA), PdCl2/nPPh3/mTSA (n and m varying between 2 and 10), were used as precatalysts for the olefin carbonylation (1-hexene, cyclohexene and styrene) with alcohols (MeOH, EtOH, n-PrOH and i-PrOH) to generate the corresponding esters (hydroalcoxycarbonylation), under mild reaction conditions. For 1-hexene carbonylation in presence of methanol (1-hexene hydromethoxycarbonylation), the most active system was PdCl2/6PPh3/5TSA at P(CO) = 50 atm and T = 125 °C, which was also active for the hydromethoxycarbonylation of other olefins (1-hexene > styrene > cyclohexene). This system was regioselective towards the linear product for 1-hexene and towards the branched product for styrene. A kinetic study of 1-hexene hydromethoxycarbonylation catalyzed by PdCl2/6PPh3/5TSA showed that the initial reaction rate (r o) was first order on Pd and MeOH concentrations and fractional order with respect to CO concentration; for olefin concentration was found a saturation curve. These kinetic results, together with coordination chemistry and computational DFT studies, allow us to propose a catalytic cycle involving species of the type [Pd(H)(L)(PPh3)2]+n (L = Cl, n = 0; L = CO, MeOH, olefin and PPh3, n = 1) as the catalytically active species and three sequential reactions: (1) olefin insertion into the Pd–H bond to yield Pd–alkyl species, (2) CO insertion into the Pd–C bond to generate Pd–acyl intermediates, and (3) the methanolysis of Pd–acyl species to produce the corresponding methyl esters, regenerate the active species and restart the cycle; the last reaction is considered the rate-determining step (rds) of the mechanism.

Graphical Abstract

Systems prepared in situ by addition of triphenylphosphine to palladium dichloride in the presence of para-toluenesulfonic acid (TSA), PdCl2/nPPh3/mTSA were used as precatalysts for the olefin carbonylation with alcohols (MeOH, EtOH, n-PrOH and i-PrOH) to generate the corresponding esters (hydroalcoxycarbonylation), under mild reaction conditions. For 1-hexene hydromethoxycarbonylation, the most active system was PdCl2/6PPh3/5TSA at P(CO) = 50 atm and T = 125 ºC. Kinetic, coordination chemistry and computational DFT studies, allow us to propose a catalytic cycle involving species of the type [Pd(H)(L)(PPh3)2]+n (L = Cl, n = 0; L = CO, MeOH, olefin, n = 1) or [Pd(H)(PPh3)3]+ as the catalytically active species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Leeuwen PWNM (2004) Homogeneous catalysis. Kluwer Academic Publisher, Dordrecht, p 407

    Book  Google Scholar 

  2. Chepaikin EG, Bezruchenko AP, Suerbaev KA, Shalmagambetov KM (2006) Pet Chem 46:117

    Article  Google Scholar 

  3. Kiss G (2001) Chem Rev 101:3435

    Article  CAS  Google Scholar 

  4. Cavinato G, Toniolo L, Vavasori A (2006) Top Organomet Chem 18:125

    CAS  Google Scholar 

  5. Brennführer A, Neumann H, Beller M (2009) ChemCatChem 1:28

    Article  Google Scholar 

  6. Vavasori A, Cavinato G, Toniolo L (2001) J Mol Catal A 176:11

    Article  CAS  Google Scholar 

  7. Vavasori A, Toniolo L, Cavinato G (2003) J Mol Catal A 191:9

    Article  CAS  Google Scholar 

  8. Temkin ON, Bruk LG (2003) Kinet Catal 44:661

    Article  Google Scholar 

  9. Noskov YG, Simonov AI, Petrov ES (2000) Kinet Catal 41:564

    Article  Google Scholar 

  10. Kron TE, Terekhova MI, Noskov YG, Petrov ES (2001) Kinet Catal 42:204

    Article  Google Scholar 

  11. Noskov YG, Petrov ES (2001) Russ Chem Bull (Int Ed) 50:1839

    Article  CAS  Google Scholar 

  12. Kron TE, Terekhova YG, Petrov ES (2004) Kinet Catal 45:551

    Article  Google Scholar 

  13. Aver’yanov VA, Sevost’yanova NT, Batashev SA, Nosova NM (2006) Kinet Catal 46:405

    Google Scholar 

  14. Aver’yanov VA, Batashev SA, Sevost’yanova NT, Nosova NM (2006) Kinet Catal 47:375

    Article  Google Scholar 

  15. Averyanov VA, Nosova NM, Astashina EV, Sevostyanova NT (2007) Kinet Catal 47:167

    Google Scholar 

  16. Seayad A, Jayasree S, Damodaran K, Toniolo L, Chaudhari RV (2000) J Organomet Chem 601:100

    Article  CAS  Google Scholar 

  17. Pérez PJ, Calabrese JC, Brunel EE (2001) Organometallics 20:337

    Article  Google Scholar 

  18. Del Rio I, Ruiz N, Claver C, van der Veen LA, van Leeuwen PWNM (2000) J Mol Catal A 161:39

    Article  Google Scholar 

  19. Muñoz B, Marinetti A, Ruiz A, Castillon S, Claver C (2005) Inorg Chem Commun 8:1113

    Article  Google Scholar 

  20. Guiu E, Caporali M, Muñoz B, Müller C, Lutz M, Spek AL, Claver C, van Leeuwen PWNM (2006) Organometallics 25:3102

    Article  CAS  Google Scholar 

  21. Muñoz BK, Santos García E, Godard C, Zangrando E, Bo C, Ruiz A, Claver C (2008) Eur J Inorg Chem 2008:4625

    Article  Google Scholar 

  22. Gusev OV, Kalsin AM, Peterleitner MG, Akhmedov NG, Bianchini C, Meli A, Oberhauser W (2002) Organometallics 21:3637

    Article  CAS  Google Scholar 

  23. Gusev OV, Kalsin AM, Petrovskii PV, Lyssenko KA, Oprunenko YF, Bianchini C, Meli A, Oberhauser W (2003) Organometallics 22:913

    Article  CAS  Google Scholar 

  24. Bianchini C, Meli A, Oberhauser W, van Leeuwen PWNM, Zuideveld MA, Freixa Z, Kamer PCJ, Spek AL, Gusev OV, Kalsin AM (2003) Organometallics 22:2409

    Article  CAS  Google Scholar 

  25. Bianchini C, Meli A, Oberhauser W, Parisel S, Gusev OV, Kalsin AM, Vologdin NV, Dolgushin FM (2004) J Mol Catal A 224:35

    Article  CAS  Google Scholar 

  26. Bianchini C, Meli A, Oberhauser W, Parisel S, Passaglia E, Ciardelli FW, Gusev OV, Kalsin AM, Vologdin NV (2005) Organometallics 24:1018

    Article  CAS  Google Scholar 

  27. Kalsin AM, Vologdin NV, Peganova TA, Petrovskii PV, Lyssenko KA, Dogulshin FM, Gusev OV (2006) J Organomet Chem 691:921

    Article  CAS  Google Scholar 

  28. Godard C, Ruiz A, Claver C (2006) Helv Chim Acta 89:1610

    Article  CAS  Google Scholar 

  29. Diab L, Gouygou M, Manoury E, Kalck P, Urrutigoïty M (2008) Tetrahedron Lett 49:5186

    Article  CAS  Google Scholar 

  30. Liu J, Heaton BT, Iggo JA, Whyman R, Bickley JF, Steiner A (2006) Chem Eur J 12:4417

    Article  CAS  Google Scholar 

  31. Zuldema E, Bo C, van Leeuwen PWNM (2007) J Am Chem Soc 129:3989

    Article  Google Scholar 

  32. Aguirre PA, Lagos CA, Moya SA, Zuñiga C, Veraoyarce C, Sola E, Peris G, Bayón JC (2007) Dalton Trans 46:5419

    Article  Google Scholar 

  33. Zuñiga C, Moya SA, Aguirre PA (2009) Catal Lett 130:373

    Article  Google Scholar 

  34. Zuñiga C, Sierra D, Oyarzo J, Klahn H (2012) J Chil Chem Soc 57:1101

    Article  Google Scholar 

  35. De la Fuente V, Waugh M, Eastham GR, Iggo JA, Castillón S, Claver C (2010) Chemistry 15:6919

    Article  Google Scholar 

  36. Fanjul T, Eastham G, Floure J, Forrest SJK, Haddow MF, Hamilton A, Pringle PG, Orpen AC, Waugh M (2013) Dalton Trans 42:100

    Article  CAS  Google Scholar 

  37. Fanjul T, Eastham G, Haddow MF, Hamilton A, Pringle PG, Orpen AC, Turner TPW, Waugh M (2012) Catal Sci Technol 2:937

    Article  CAS  Google Scholar 

  38. Amadio E, Cavinato G, Dolmella A, Rochin L, Toniolo L, Vavasori A (2009) J Mol Catal A 298:103

    Article  CAS  Google Scholar 

  39. Cavinato G, Facchetti S, Toniolo L (2010) J Mol Catal A 333:180

    Article  CAS  Google Scholar 

  40. Amadio E, Cavinato G, Härter P, Toniolo L (2013) J Mol Catal A 745–746:115

    Google Scholar 

  41. Perrin D, Armarego WLF (1988) Purification of laboratory chemicals, 3rd edn. PergamonPress, Great Britain

    Google Scholar 

  42. Casado J, López-Quintela MA, Lorenzo-Barral FM (1986) J Chem Educ 63:450

    Article  CAS  Google Scholar 

  43. Bhanage BM, Divekar S, Deshpande R, Chaudhari R (1997) J Mol Catal A 115:247

    Article  CAS  Google Scholar 

  44. Habib M, Trujillo H, Alexander C, Storhoff B (1985) Inorg Chem 24:2344

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB (2003) GAUSSIAN 03 Revision B.04. Gaussian Inc., Pittsburgh

    Google Scholar 

  46. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  48. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  49. Collins JB, Schleyer PVR, Binkley JS, Pople JA (1967) J Chem Phys 64:5142

    Article  Google Scholar 

  50. Dobbs KD, Hehre WJ (1987) J Comput Chem 8:880

    Article  CAS  Google Scholar 

  51. Gordon MS (1980) Chem Phys Lett 76:163

    Article  CAS  Google Scholar 

  52. Raghavachari K, Trucks GW (1989) J Chem Phys 91:1062

    Article  Google Scholar 

  53. Benedek C, Gömöry A, Heil B, Törös S (2001) J Organomet Chem 622:112

    Article  CAS  Google Scholar 

  54. Cavalieri d’Oro P, Raimondi G, Montrasi G, Gragorio G, Andreeta A (1991) J Chem Soc Chem Com 149:1096

    Google Scholar 

  55. Srivastava V, Sharma S, Shukla R, Subrahmanyam N, Jasra R (2005) Ind Eng Res 44:1764

    Article  CAS  Google Scholar 

  56. Bardi R, Plazzesi AM, Del Pra A, Cavinato G, Toniolo L (1995) Inorg Chim Acta 102:99

    Article  Google Scholar 

  57. Cavinato G, Toniolo L (1990) J Organomet Chem 398:187

    Article  CAS  Google Scholar 

  58. De Peter JJM, Tromp DS, Tooke DM, Spek AL, Deelman B-J, van Koten G, Elsevier CJ (2005) Organometallics 24:6411

    Article  Google Scholar 

  59. Clegg W, Eastham GR, Elsegood MRJ, Heaton BT, Iggo JA, Tooze RP, Whyman R, Zacchini (2002) J Chem Soc Dalton Trans 3300

  60. Zudin VN, Chinakov VD, Nekipelov VM, Rogov VA, Likholobov VA, Yermakov YI (1989) J Mol Catal 52:27

    Article  CAS  Google Scholar 

  61. van Leeuwen PWNM, Zuideveld MA, Swennenhuis BHG, Freixa Z, Kamer PCJ, Goubitz K, Fraanje Lutz M, Spek AL (2003) J Am Chem Soc 125:5523

    Article  Google Scholar 

  62. Liu J, Heaton BT, Iggo JA, Whyman R (2004) Chem Commun 1326

  63. Donald SMA, Mcgregor SA, Settels V, Cole-Hamilton DJ, Eastham GR (2007) ChemComm 562

  64. Ferguson G, McCrindle R, McAlees A, Parvez M (1982) Acta Cryst B38:2679

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from ONCTI (Proyecto 2011001188) and CONDES-LUZ are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlín Rosales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosales, M., Pacheco, I., Medina, J. et al. Kinetics and Mechanisms of Homogeneous Catalytic Reactions. Part 12. Hydroalcoxycarbonylation of 1-Hexene Using Palladium/Triphenylphosphine Systems as Catalyst Precursors. Catal Lett 144, 1717–1727 (2014). https://doi.org/10.1007/s10562-014-1335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1335-0

Keywords

Navigation