Skip to main content
Log in

Solid Supported Palladium(0) Nanoparticles: An Efficient Heterogeneous Catalyst for Regioselective Hydrosilylation of Alkynes and Suzuki Coupling of β-Arylvinyl Iodides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The solid supported palladium(0) nanoparticles (NPs) were found as an active heterogeneous catalyst for regioselective hydrosilylation of alkynes with organosilanes in the presence of NaI as additive. Aliphatic as well as aromatic terminal/substituted alkynes with both electron releasing and withdrawing functionalities similarly participated in the hydrosilylation to produce regioselective β-isomers of vinylsilanes under mild reaction conditions. Reducible functional groups such as nitrile, ester, halide, alkene and alkyne were also found to be tolerated under this condition. Furthermore, the triethylsilylstyrene was applied for consecutive iododesilylation followed by Suzuki coupling reaction to produce stilbenes. The air/moisture stable SS–Pd catalyst was recycled for hydrosilylation reaction up to ten runs without significant loss of its catalytic activity.

Graphical Abstract

Solid Supported Palladium(0) Nanoparticles: An Efficient Heterogeneous Catalyst for Regioselective Hydrosilylation of Alkynes and Suzuki Coupling of β-Arylvinyl Iodides

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Ojima I, Li ZY, Zhu JW (1998) In: Rappoport Z, Apeloig Y (eds) Chemistry of organic silicon compounds, Wiley, Chichester, p 1687–1792

  2. Langkopf E, Schinzer D (1995) Chem Rev 95:1375

    Article  CAS  Google Scholar 

  3. Hiyama T (1998) In: Diederich F, Stang PJ (eds) Metal-catalyzed cross-coupling reactions, Wiley, Weinheim, p 421

  4. Hiyama T, Shirakawa E (2002) Top Curr Chem 219:61

    Article  CAS  Google Scholar 

  5. Hatanaka Y, Hiyama T (1991) Synlett 1991:845

    Article  Google Scholar 

  6. Mowery M, De Shong P (1999) Org Lett 1:2137

    Article  CAS  Google Scholar 

  7. Denmark SE, Sweis RF (2002) Acc Chem Res 35:835

    Article  CAS  Google Scholar 

  8. Fleming I, Henning R, Plaut H (1984) Chem Commun 29:30

    Google Scholar 

  9. Tamao K, Maeda K (1986) Tetrahedron Lett 27:65

    Article  CAS  Google Scholar 

  10. Jones GR, Landais Y (1996) Tetrahedron 52:7599

    Article  CAS  Google Scholar 

  11. Blumenkopf TA, Overman LE (1986) Chem Rev 86:857

    Article  CAS  Google Scholar 

  12. Kakiuchi F, Yamada A, Chatani N, Murai S, Furukawa N, Seki Y (1990) Organometallics 18:2033

    Article  Google Scholar 

  13. Kakiuchi F, Tanaka Y, Chatani N, Murai S (1993) J Organomet Chem 456:45

    Article  CAS  Google Scholar 

  14. Marciniec B (1992) Comprehensive handbook on hydrosilylation. Pergamon Press, Oxford

    Google Scholar 

  15. Marciniec B, Maciejewski H, Pietraszuk C, Pawluc P (2009) Hydrosilylation: a comprehensive review on recent advances. In: Marciniec B (ed) Advances in silicon science, Vol 1. Springer, Berlin, Chapters 2 and 3

  16. Na Y, Chang S (2000) Org Lett 2:1887

    Article  CAS  Google Scholar 

  17. Trost BM, Ball ZT (2005) J Am Chem Soc 127:17644

    Article  CAS  Google Scholar 

  18. Trost BM, Machacek MR, Ball ZT (2003) Org Lett 5:1895

    Article  CAS  Google Scholar 

  19. Sarah Maifeld V, Michael NT, Lee D (2005) Tetrahedron Lett 46:105

    Article  Google Scholar 

  20. Sato A, Kinoshita H, Shinokubo H, Oshima K (2004) Org Lett 6:2217

    Article  CAS  Google Scholar 

  21. Takeuchi R, Nitta S, Watanabe D (1996) J Org Chem 60:3045

    Article  Google Scholar 

  22. Itami K, Mitsudo K, Nishino A, Yoshida J (2002) J Org Chem 67:2645

    Article  CAS  Google Scholar 

  23. Wang F, Neckers DCJ (2003) J Organomet Chem 665:1

    Article  CAS  Google Scholar 

  24. Wu W, Li CJ (2003) Chem Commun 14:1668

    Article  Google Scholar 

  25. Bo GD, Berthon-Gelloz G, Tinant B, Markó IE (2006) Organometallics 25:1881

    Article  Google Scholar 

  26. Hamze A, Provot O, Brion JD, Alami M (2007) Synthesis 2007:2025

    Article  Google Scholar 

  27. Hamze A, Provot O, Brion JD, Alami M (2008) Tetrahedron Lett 49:2429

    Article  CAS  Google Scholar 

  28. Berthon-Gelloz G, Schumers JM, Bo GD, Tinant B, Marko IE (2008) J OrgChem 73:4190

    Article  CAS  Google Scholar 

  29. Ramírez-Oliva E, Hernández A, Martínez-Rosales JM, Aguilar-Elguezabalc A, Herrera-Pérez G, Cervantes J (2006) Arkivoc 126:136

    Google Scholar 

  30. Alonso F, Buitrago R, Moglie Y, Ruiz-Martínez J, Sepúlveda-Escribano A, Yus M (2011) J Organomet Chem 696:368

    Article  CAS  Google Scholar 

  31. Cano R, Yus M, Ramon DJ (2012) ACS Catal 2:1070

    Article  CAS  Google Scholar 

  32. Motoda D, Shinokubo H, Oshima K (2002) Synlett 2002:1529

    Article  Google Scholar 

  33. Yamashita H, Uchimaru Y (1999) Chem Commun 1763

  34. Sumida T, Kato S, Yoshida T, Hosoya (2012) Org Lett 14:1552

    Article  CAS  Google Scholar 

  35. Kim DH, Park YW (2006) Bull Korean Chem Soc 27:27

    Article  CAS  Google Scholar 

  36. Bandari R, Prager A,Höche T,Buchmeiser MR (2011) Arkivoc 4:54

  37. Buchmeiser MR, Bandari R, Prager A, Lober A, Knolle W (2010) Macromol Symp 287:107

    Article  CAS  Google Scholar 

  38. Bandari R, Buchmeiser MR (2012) Catal SciTechnol 2:220

    CAS  Google Scholar 

  39. Bandari R, Hoche T, Prager A, Dirnberger K, Buchmeiser MR (2010) Chem Eur J 16:4650

    Article  CAS  Google Scholar 

  40. Das P, Sharma D, Shil AK, Kumari A (2011) Tetrahedron Lett 52:1176

    Article  CAS  Google Scholar 

  41. Bandna, Aggarwal N, Das P (2011) Tetrahedron Lett 52:4954

    Article  CAS  Google Scholar 

  42. Bandna, Guha NR, Shil AK, Sharma D, Das P (2012) Tetrahedron Lett 53:5318

    Article  CAS  Google Scholar 

  43. Guha NR, Reddy CB, Aggarwal N, Sharma D, Shil AK, Bandna, Das P (2012) Adv Synth Catal 354:2911

    Article  CAS  Google Scholar 

  44. Sharma D, Kumar S, Shil AK, Guha NR, Bandna, Das P (2012) Tetrahedron Lett 53:7044

    Article  CAS  Google Scholar 

  45. Shil AK, Guha NR, Sharma D, Das P (2013) RSC Adv 3:13671

    Article  CAS  Google Scholar 

  46. Sharma D, Reddy CB, Shil AK, Saroch RP, Das P (2013) Mol Divers 17:651

    Article  CAS  Google Scholar 

  47. Kumar S, Das P (2013) New J Chem 37:2987

    Article  CAS  Google Scholar 

  48. Shil AK, Das P (2013) Green Chem 15:3421

    Article  CAS  Google Scholar 

  49. Perry RJ, Karageorgis M, Hensler J (2007) Macromolecules 40:3929

    Article  CAS  Google Scholar 

  50. Alonso F, Buitrago R, Moglie Y, Sepulveda-Escribano A, Yus M (2012) Organometallics 31:2336

    Article  CAS  Google Scholar 

  51. Stamos DP, Taylor AG, Kishi Y (1996) Tetrahedron Lett 37:8647

    Article  CAS  Google Scholar 

  52. Ilardi EA, Stivala CE, Zakarian A (2008) Org Lett 10:1727

    Article  CAS  Google Scholar 

  53. Pawluc P, Franczyk A, Walkowiak JD, Hreczycho G, Kubicki M, Marciniec B (2011) Org Lett 13:1976

    Article  CAS  Google Scholar 

  54. Sidera M, Costa AM, Vilarrasa J (2011) Org Let 13:4934

    Article  CAS  Google Scholar 

  55. Tsuji J (2000) Reactions of Organic Halides and Pseudohalides. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis. Wiley, New York, pp 27–108

    Google Scholar 

  56. Hoshiya N, Isomura N, Shimoda M, Yoshikawa H, Yamashita Y, Iizuka K, Tsukamoto S, Shuto S, Arisawa M (2009) ChemCatChem 1:279

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Director CSIR-IHBT for providing necessary facilities during the course of the work. We gratefully acknowledge AIRF-JNU for HRTEM analysis. The authors thank CSIR, New Delhi for financial support as part of XII Five Year Plan programme under title ORIGIN (CSC-0108). CBR (UGC-JRF), AKS (CSIR-SRF), NRG (UGC-SRF) and DS (CSIR-SRF) thanks CSIR and UGC New Delhi for awarding fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pralay Das.

Additional information

CSIR-IHBT communication no. 3546

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal Reddy, C., Shil, A.K., Guha, N.R. et al. Solid Supported Palladium(0) Nanoparticles: An Efficient Heterogeneous Catalyst for Regioselective Hydrosilylation of Alkynes and Suzuki Coupling of β-Arylvinyl Iodides. Catal Lett 144, 1530–1536 (2014). https://doi.org/10.1007/s10562-014-1311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1311-8

Keywords

Navigation