Skip to main content
Log in

Polymerization on CO-Reduced Phillips Catalyst initiates through the C–H bond Activation of Ethylene on Cr–O Sites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Investigation of the polymerization of ethylene on CO-reduced Phillips catalyst (1 wt% chromium) by infrared spectroscopy reveals the presence of new OH bands. In particular, an OH-band appears at 3,605 cm−1, consistent with the interaction of the SiOH group with an adjacent Lewis acidic chromium center, Si–(μ-OH)–Cr. Polymerization with d4-ethylene leads to the formation of the isotopically shifted band at 2,580 cm−1, consistent with heterolytic C–H activation of ethylene over a Cr–O bond to generate the first Cr–C bond in ethylene polymerization with Phillips catalyst, as recently observed on well-defined Cr(III) silicates.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brandsch J, Piringer O (2008) Characteristics of Plastic Materials. In: Piringer OG, Baner AL (eds) Plastic Packaging. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 15–61

  2. McDaniel MP (2010) Review of Phillips chromium catalyst for ethylene polymerization. In: Hoff R, Mathers RT (eds) Handbook of transition metal polymerization catalysts. Wiley, Hoboken, pp 291–446

  3. McDaniel MP (2010) Adv Catal 53:123–606

    CAS  Google Scholar 

  4. McDaniel MP, Collins KS, Benham EA (2007) J Catal 252:281–295

    Article  CAS  Google Scholar 

  5. Groppo E, Estephane J, Lamberti C, Spoto G, Zecchina A (2007) Catal Today 126:228–234

    Article  CAS  Google Scholar 

  6. Chen EY-X, Marks TJ (2000) Chem Rev 100:1391–1434

    Article  CAS  Google Scholar 

  7. Togni A, Halterman RL (1998) Metallocenes. Wiley-VCH, Weinheim

    Book  Google Scholar 

  8. Weckhuysen BM, Schoonheydt RA (1999) Catal Today 51:215–221

    Article  CAS  Google Scholar 

  9. Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina A (2005) Chem Rev 105:115–184

    Article  CAS  Google Scholar 

  10. McDaniel MP, Martin SJ (1991) J Phys Chem 95(8):3289–3293

    Article  CAS  Google Scholar 

  11. Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Chem Rev 96:3327–3349

    Article  CAS  Google Scholar 

  12. Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C (2013) Chem Rev 113:1736–1850

    Article  CAS  Google Scholar 

  13. Myers DL, Lunsford JH (1986) J Catal 99:140–148

    Article  CAS  Google Scholar 

  14. Przhevalskaya LK, Shvets VA, Kazansky VB (1975) J Catal 39:363–368

    Article  CAS  Google Scholar 

  15. Conley MP, Delley MF, Siddiqi G, Lapadula G, Norsic S, Monteil V, Safonova OV, Copéret C (2014) Angew Chem Int Ed 53(7):1872–1876. doi:10.1002/anie.201308983

    Article  Google Scholar 

  16. Zielinski P, Dalla Lana IG (1992) J Catal 137(2):368–376

    Article  CAS  Google Scholar 

  17. Groeneveld C, Wittgen PPMM, Swinnen HPM, Wernsen A, Schuit GCA (1983) J Catal 83:346–361

    Article  CAS  Google Scholar 

  18. Jozwiak WK, Dalla Lana IG, Fiedorow R (1990) J Catal 121:183–195

    Article  CAS  Google Scholar 

  19. Kantcheva M, Dallalana IG, Szymura JA (1995) J Catal 154:329–334

    Article  CAS  Google Scholar 

  20. Ghiotti G, Garrone E, Coluccia S, Morterra C, Zecchina A (1979) Chem Comm 22:1032–1033

    Article  Google Scholar 

  21. Ghiotti G, Garrone E, Zecchina A (1988) J Mol Cat 46:61–77

    Article  Google Scholar 

  22. Espelid ò, Borve KJ (2002) J Catal 205:366–374

    Article  CAS  Google Scholar 

  23. Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina A (2006) J Catal 240:172–181

    Article  CAS  Google Scholar 

  24. Ruddick VJ, Badyal JPS (1998) J. Phys Chem B 102:2991–2994

    Article  CAS  Google Scholar 

  25. Zecchina A, Garrone E, Ghiotti G, Coluccia S (1975) J Phys Chem 79:972–978

    Article  CAS  Google Scholar 

  26. Sebastian J, Schehl N, Bouchard M, Boehle M, Li L, Lagounov A, Lafdi K (2014) Carbon 66:191–200

    Article  CAS  Google Scholar 

  27. van der Meer J, Bardez-Giboire I, Mercier C, Revel B, Davidson A, Denoyel R (2010) J Phys Chem C 114:3507–3515

    Article  Google Scholar 

  28. Hensen EJM, Pidko EA, Rane N, van Santen RA (2007) Angew Chem Int Ed 46:7273–7276

    Article  CAS  Google Scholar 

  29. Coperet C (2010) Chem Rev 110:656–680

    Article  CAS  Google Scholar 

  30. Groeneveld C, Wittgen PPMM, van Kersbergen AM, Mestrom PLM, Nuijten CE, Schuit GCA (1979) J Catal 59:153–167

    Article  CAS  Google Scholar 

  31. Weckhuysen BM, Schoonheydt RA (1999) Catal Today 51:223–232

    Article  CAS  Google Scholar 

  32. Wischert R, Copéret C, Delbecq F, Sautet P (2011) Angew Chem Int Ed 50:3202–3205

    Article  CAS  Google Scholar 

  33. Wischert R, Laurent P, Copéret C, Delbecq F, Sautet P (2012) J Am Chem Soc 134:14430–14449

    Article  CAS  Google Scholar 

  34. Gabrienko AA, Arzumanov SS, Toktarev AV, Stepanov AG (2012) J Phys Chem C 116:21430–21438

    Article  CAS  Google Scholar 

  35. Wittgen PPMM, Groeneveld C, Zwaans PJCJM, Morgenstern HJB, van Heughten AH, van Heumen CJM, Schuit GCA (1982) J Catal 77:360–381

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Copéret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delley, M.F., Conley, M.P. & Copéret, C. Polymerization on CO-Reduced Phillips Catalyst initiates through the C–H bond Activation of Ethylene on Cr–O Sites. Catal Lett 144, 805–808 (2014). https://doi.org/10.1007/s10562-014-1238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1238-0

Keywords

Navigation