Skip to main content
Log in

Hydrodeoxygenation of Dibenzofuran Over SBA-15 Supported Pt, Pd, and Ru Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydrodeoxygenation (HDO) of dibenzofuran (DBF) has been carried out over mesoporous silica SBA-15 supported Pt, Pd, and Ru catalysts. The HDO of DBF went through hydrogenation of aromatic rings first, followed by hydrogenolysis of the saturated C–O bond to produce hydrocarbons. The detection of intermediate 2-cyclohexylcyclohexanol over as-prepared Pt catalysts illustrated that the aromatic ring-containing hydrogenated species transformed to the major deoxygenated product bicyclohexane after elimination of the heteroatom oxygen. Among all three catalysts, the Pt/SBA-15 catalysts exhibited the highest hydrogenation activity to yield aromatic ring-containing hydrogenated products. However, the Ru catalysts were more efficient in formation of completely deoxygenated products. Meanwhile, more cleavage of the saturated C–O bond took place at higher reaction temperature in the HDO of DBF. The increase of hydrogen pressure promoted the saturation of aromatic rings with an obvious influence on the conversion of DBF.

Graphical Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alonso DM, Wettstein SG, Dumesic JA (2012) Chem Soc Rev 41:8075

    Article  CAS  Google Scholar 

  2. Corma A, de la Torre O, Renz M, Villandier N (2011) Angew Chem Int Ed 50:2375

    Article  CAS  Google Scholar 

  3. Choudhary TV, Phillips CB (2011) Appl Catal A 397:1

    Article  CAS  Google Scholar 

  4. Huber GW, Corma A (2007) Angew Chem Int Ed 46:7184

    Article  CAS  Google Scholar 

  5. Lavopa V, Satterfield CN (1987) Energy Fuels 1:323

    Article  CAS  Google Scholar 

  6. Krishnamurthy S, Panvelker S, Shah YT (1981) AlChE J 27:994

    Article  CAS  Google Scholar 

  7. Girgis MJ, Gates BC (1994) Ind Eng Chem Res 33:1098

    Article  CAS  Google Scholar 

  8. Girgis MJ, Gates BC (1994) Ind Eng Chem Res 33:2301

    Article  CAS  Google Scholar 

  9. Romero Y, Richard F, Reneme Y, Brunet S (2009) Appl Catal A 353:46

    Article  CAS  Google Scholar 

  10. Liu C, Shao Z, Xiao Z, Liang C (2012) React Kinet Mech Catal 107:393

    Article  Google Scholar 

  11. Bejblová M, Zámostný P, Červený L, Čejka J (2005) Appl Catal A 296:169

    Article  Google Scholar 

  12. Runnebaum RC, Nimmanwudipong T, Limbo RR, Block DE, Gates BC (2012) Catal Lett 142:7

    Article  CAS  Google Scholar 

  13. Furimsky E (2000) Appl Catal A 199:147

    Article  CAS  Google Scholar 

  14. Wang YX, Fang YM, He T, Hu HQ, Wu JH (2011) Catal Commun 12:1201

    Article  CAS  Google Scholar 

  15. Liu C, Shao Z, Xiao Z, Williams CT, Liang C (2012) Energy Fuels 26:4205

    Article  CAS  Google Scholar 

  16. Zhao C, Kou Y, Lemonidou AA, Li XB, Lercher JA (2009) Angew Chem Int Ed 48:3987

    Article  CAS  Google Scholar 

  17. Lee CR, Yoon JS, Suh YW, Choi JW, Ha JM, Suh DJ, Park YK (2012) Catal Commun 17:54

    Article  CAS  Google Scholar 

  18. Bui VN, Laurenti D, Delichère P, Geantet C (2011) Appl Catal B 101:246

    Article  CAS  Google Scholar 

  19. Stocker M (2008) Angew Chem Int Ed 47:9200

    Article  CAS  Google Scholar 

  20. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548

    Article  CAS  Google Scholar 

  21. Wang L, Zhang M, Zhang M, Sha G, Liang C (2013) Energy Fuels 27:2209

    Article  CAS  Google Scholar 

  22. Cecilia JA, Infantes-Molina A, Rodriguez-Castellon E, Jimenez-Lopez A, Oyama ST (2013) Appl Catal B 136:140

    Article  Google Scholar 

  23. Kruk M, Jaroniec M, Ko CH, Ryoo R (2000) Chem Mater 12:1961

    Article  CAS  Google Scholar 

  24. Resasco DE (2011) J Phys Chem Lett 2:2294

    Article  CAS  Google Scholar 

  25. Hicks JC (2011) J Phys Chem Lett 2:2280

    Article  CAS  Google Scholar 

  26. Shabtai J, Nag NK, Massoth FE (1987) J Catal 104:413

    Article  CAS  Google Scholar 

  27. Zhu XL, Lobban LL, Mallinson RG, Resasco DE (2011) J Catal 281:21

    Article  CAS  Google Scholar 

  28. Zhao C, Kou Y, Lemonidou AA, Li XB, Lercher JA (2010) Chem Commun 46:412

    Article  CAS  Google Scholar 

  29. Talukdar AK, Bhattacharyya KG, Sivasanker S (1993) Appl Catal A 96:229

    Article  CAS  Google Scholar 

  30. Mortensen PM, Grunwaldt JD, Jensen PA, Jensen AD (2013) ACS Catal 3:1774

    Article  CAS  Google Scholar 

  31. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108:17886

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (21073023), the Fundamental Research Funds for the Central Universities (DUT13RC(3)41), and China Postdoctoral Science Foundation funded project (2013M541220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhai Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Li, C., Jin, S. et al. Hydrodeoxygenation of Dibenzofuran Over SBA-15 Supported Pt, Pd, and Ru Catalysts. Catal Lett 144, 809–816 (2014). https://doi.org/10.1007/s10562-014-1236-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1236-2

Keywords

Navigation