Skip to main content
Log in

Palladium Nanoparticle–Graphene Catalysts for Asymmetric Hydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We report for the first time the application of palladium nanoparticle-graphene (Pd/Gn) catalysts in the asymmetric hydrogenation of aliphatic α,β-unsaturated carboxylic acids using cinchonidine as chiral modifier. Pd/Gns were prepared by deposition–precipitation from the aqueous phase over graphite oxide and subsequent simultaneous reduction of both the support and the metal precursor with NaBH4. The materials obtained were characterized by ICP optical emission spectroscopy, X-ray diffraction spectroscopy, Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. We demonstrate that the Pd/Gns modified by cinchonidine can act as efficient catalysts in the asymmetric hydrogenation of α,β-unsaturated carboxylic acids for producing optically enriched saturated carboxylic acids.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Smith GV, Notheisz F (1999) Heterogeneous catalysis in organic chemistry. Academic Press, San Diego

    Google Scholar 

  2. Sheldon RA, van Bekkum H (2001) Fine chemicals through heterogeneous catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  3. Dörwald FZ (ed) (2002) Organic synthesis on solid phase. Wiley-VCH, Weinheim

    Google Scholar 

  4. Ding K, Uozumi Y (eds) (2008) Handbook of asymmetric heterogeneous catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  5. Rylander P (1979) Catalytic hydrogenation in organic syntheses. Academic Press, New York

    Google Scholar 

  6. Bartók M, Czombos J, Felföldi K, Gera L, Göndös Gy, Molnár Á, Notheisz F, Pálinkó I, Wittmann Gy, Zsigmond ÁG (1985) Stereochemistry of heterogeneous metal catalysis. Wiley, Chichester

    Google Scholar 

  7. Nishimura S (2001) Handbook of heterogeneous catalytic hydrogenation for organic synthesis. Wiley, New York

    Google Scholar 

  8. Molnár Á, Smith GV, Bartók M (1986) J Catal 101:67

    Article  Google Scholar 

  9. Molnár Á, Smith GV, Bartók M (1989) Adv Catal 36:329

    Article  Google Scholar 

  10. Molnár Á, Katona T, Bartók M, Varga K (1991) J Mol Catal 64:41

    Article  Google Scholar 

  11. Bartók M, Szőllősi Gy, Mastalir A, Dékány I (1999) J Mol Catal A Chem 139:227

    Article  Google Scholar 

  12. Balázsik K, Török B, Szakonyi G, Bartók M (1999) Appl Catal A Gen 182:53

    Article  Google Scholar 

  13. Mastalir Á, Király Z, Szőllősi Gy, Bartók M (2000) J Catal 194:146

    Article  CAS  Google Scholar 

  14. Kun I, Szőllősi G, Bartók M (2001) J Mol Catal A Chem 169:235

    Article  CAS  Google Scholar 

  15. Molnár Á, Mastalir Á, Bartók M (1989) J Chem Soc Chem Commun 124

  16. Sirokmán G, Mastalir Á, Molnár Á, Bartók M, Schay Z, Guczi L (1990) Carbon 28:35

    Article  Google Scholar 

  17. Notheisz F, Mastalir Á, Bartók M (1992) J Catal 134:608

    Article  CAS  Google Scholar 

  18. Mastalir Á, Notheisz F, Bartók M, Haraszti T, Király Z, Dékány I (1996) Appl Catal A Gen 144:237

    Article  CAS  Google Scholar 

  19. Mastalir A, Király Z, Walter J, Notheisz F, Bartók M (2001) J Mol Catal A Chem 175:205

    Article  CAS  Google Scholar 

  20. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  21. Yang WR, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Angew Chem Int Ed 49:2114

    Article  CAS  Google Scholar 

  22. Brownson DAC, Kampouris DK, Banks CE (2011) J Power Sources 196:4873

    Article  CAS  Google Scholar 

  23. Antolini E (2012) Appl Catal B Environ 123–124:52

    Article  Google Scholar 

  24. Machado BF, Serp P (2012) Catal Sci Technol 2:54

    Article  CAS  Google Scholar 

  25. Klabunovskii E, Smith GV, Zsigmond Á (2006) Heterogeneous enantioselective hydrogenation. Springer, Dordrecht

    Book  Google Scholar 

  26. Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863

    Article  CAS  Google Scholar 

  27. Bartók M (2010) Chem Rev 110:1663

    Article  Google Scholar 

  28. Margitfalvi JL, Tálas E (2010) Catalysis 22:144

    Article  CAS  Google Scholar 

  29. Szőllősi Gy, Hanaoka T, Niwa S, Mizukami F, Bartók M (2005) J Catal 231:480

    Article  Google Scholar 

  30. Szőllősi G, Balázsik K, Bartók M (2007) Appl Catal A Gen 319:193

    Article  Google Scholar 

  31. Szőllősi Gy, Németh Zs, Hernádi K, Bartók M (2009) Catal Lett 132:370

    Article  Google Scholar 

  32. Makra Zs, Szőllősi Gy, Bartók M (2012) Catal Today 181:56

    Article  CAS  Google Scholar 

  33. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  34. Yang J, Tian CG, Wang L, Fu HG (2011) J Mater Chem 21:3384

    Article  CAS  Google Scholar 

  35. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Eden Prairie

    Google Scholar 

  36. Hu Z-L, Aizawa M, Wang Z-M, Yoshizawa N, Hatori H (2010) Langmuir 26:6681

    Article  CAS  Google Scholar 

  37. Kubota T, Ogawa H, Okamoto Y, Misaki T, Sugimura T (2012) Appl Catal A Gen 437–438:18

    Article  Google Scholar 

  38. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Phys Chem Chem Phys 9:1276

    Article  CAS  Google Scholar 

  39. Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F (2010) Nano Res 3:429

    Article  CAS  Google Scholar 

  40. Chakraborty S, Guo W, Hauge RH, Billups WE (2008) Chem Mater 20:3134

    Article  CAS  Google Scholar 

  41. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA, Ruoff RS (2009) Carbon 47:145

    Article  CAS  Google Scholar 

  42. Tkachev SV, Buslaeva EYu, Naumkin AV, Kotova SL, Laure IV, Gubin SP (2012) Inorg Mater 48:796

    Article  CAS  Google Scholar 

  43. Hess R, Krumeich F, Mallat T, Baiker A (2004) Catal Lett 92:141

    Article  CAS  Google Scholar 

  44. Nitta Y, Kubota T, Okamoto Y (2004) J Mol Catal A Chem 212:155

    Article  CAS  Google Scholar 

  45. Impalá D, Franceschini S, Piccolo O, Vaccari A (2008) Catal Lett 125:243

    Article  Google Scholar 

  46. Szőllősi Gy, Niwa S, Hanaoka T, Mizukami F (2005) J Mol Catal A Chem 230:91

    Article  Google Scholar 

  47. He HK, Gao C (2011) Sci China Chem 54:397

    Article  CAS  Google Scholar 

  48. Chandra S, Bag S, Das P, Bhattacharya D, Pramanik P (2012) Chem Phys Lett 519–520:59

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the Hungarian National Science Foundation (OTKA Grant K 72065) and TÁMOP-4.2.2.A-11/1/KONV-2012-0047 are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to György Szőllősi or Mihály Bartók.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szőri, K., Puskás, R., Szőllősi, G. et al. Palladium Nanoparticle–Graphene Catalysts for Asymmetric Hydrogenation. Catal Lett 143, 539–546 (2013). https://doi.org/10.1007/s10562-013-1006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1006-6

Keywords

Navigation