Skip to main content
Log in

Atomic Clusters of Pd and AuNPdM in Polyaniline

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The previously described cyclic pathway method for deposition of atomic metals has been used to create Pd1–6 atomic clusters and Au1–5Pd1 and Au1–4Pd2 bimetallic atomic clusters in polyaniline (PANI). The controlled deposition of predetermined atomic size clusters of metals has been examined by testing the electrochemical oxidation of n-propanol in 1 M NaOH. The oxidation peak currents from the cyclic voltammograms were found to follow the same trend as the changes of the calculated HOMO–LUMO gap energies. The FTIR signature of PANI for these films also followed the calculated trend. This study also looks at the effects of atomic arrangement in the atomic structure on the support matrix of PANI. The results presented here have shown that the cyclic pathway is a versatile method for the atomic deposition of single metal, bimetallic, or even trimetallic atomic clusters in PANI.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jonke AP, Josowicz M, Janata J (2012) J Electrochem Soc 159:P40

    Article  CAS  Google Scholar 

  2. Jonke AP, Josowicz M, Janata J, Engelhard MH (2010) J Electrochem Soc 157:P83

    Article  CAS  Google Scholar 

  3. Jonke AP, Josowicz M, Janata J (2011) J Electrochem Soc 158:E147

    Article  CAS  Google Scholar 

  4. Moghaddam RB, Pickup PG (2011) Electrochim Acta 56:7666

    Article  CAS  Google Scholar 

  5. Choudary BM, Roy M, Roy S, Kantam ML, Sreedhar B, Kumar KV (2006) Adv Synth Catal 348:1734

    Article  CAS  Google Scholar 

  6. Islam RU, Witcomb MJ, van der Lingen E, Scurrell MS, Van Otterlo W, Mallick K (2011) J Organomet Chem 696:2206

    Article  Google Scholar 

  7. Drelinkiewicz A, Hasik M, Kloc M (2000) Catal Lett 64:41

    Article  CAS  Google Scholar 

  8. Drelinkiewicza A, Waksmundzka A, Makowski W, Sobczak JW, Krol A, Zieba A (2004) Catal Lett 94:143

    Article  CAS  Google Scholar 

  9. Pandey RK, Lakshminarayanan V (2009) J Phys Chem C 113:21596

    Article  CAS  Google Scholar 

  10. Amaya T, Saio D, Hirao T (2007) Tetrahedron Lett 48:2729

    Article  CAS  Google Scholar 

  11. Liu HP, Ye JQ, Xu CW, Jiang SP, Tong YX (2008) J Power Sources 177:67

    Article  CAS  Google Scholar 

  12. Wang DY, Liu JP, Wu ZY, Zhang JH, Su YZ, Liu ZL, Xu CW (2009) Int J Electrochem Sci 4:1672

    CAS  Google Scholar 

  13. Ye JQ, Liu HP, Xu CW, Jiang SP, Tong YX (2007) Electrochem Commun 9:2760

    Article  CAS  Google Scholar 

  14. Hakkinen H, Landman U (2000) Phys Rev B 62:R2287

    Article  CAS  Google Scholar 

  15. Zanti G, Peeters D (2010) J Phys Chem A 114:10345

    Article  CAS  Google Scholar 

  16. Dimitratos N, Villa A, Wang D, Porta F, Su DS, Prati L (2006) J Catal 244:113

    Article  CAS  Google Scholar 

  17. Hou WB, Dehm NA, Scott RWJ (2008) J Catal 253:22

    Article  CAS  Google Scholar 

  18. Bianchi CL, Canton P, Dimitratos N, Porta F, Prati L (2005) Catal Today 102:203

    Article  Google Scholar 

  19. Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) PCCP 5:1917

    Article  CAS  Google Scholar 

  20. Smith JA, Josowicz M, Janata J (2005) PCCP 7:3614

    Article  Google Scholar 

  21. Denuault G, Milhano C, Pletcher D (2005) PCCP 7:3545

    Article  CAS  Google Scholar 

  22. Bolzan AE (1995) J Electroanal Chem 380:127

    Article  Google Scholar 

  23. Chi K-W, Hwang HY, Park JY, Lee CW (2009) Synth Met 159:26

    Article  CAS  Google Scholar 

  24. Higuchi M, Ikeda I, Hirao T (1997) J Org Chem 62:1072

    Article  CAS  Google Scholar 

  25. Lee CW, Hwang HY, Jeong HM, Yoon UC, Chi K-W (2009) Synth Met 159:1820

    Article  CAS  Google Scholar 

  26. Nava P, Sierka M, Ahlrichs R (2003) PCCP 5:3372

    Article  CAS  Google Scholar 

  27. Kang ET, Neoh KG, Tan KL (1998) Prog Polym Sci 23:277

    Article  CAS  Google Scholar 

  28. Ai-Jie M, Xiao-Yu K, Gang C, Ya-Ru Z, Yan-Fang L, Peng L, Chi Z (2011) Mol Phys 109:1485

    Article  Google Scholar 

  29. Guo JJ, Yang JX, Die D (2005) Phys B Condens Matter 367:158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The ICP-MS contributions to the submitted manuscript were performed by UChicago Argonne, LLC, Operator of Argonne National Laboratory (‘‘Argonne’’). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. Funding provided for this work from the Georgia Research Alliance is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Janata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonke, A.P., Steeb, J.L., Josowicz, M. et al. Atomic Clusters of Pd and AuNPdM in Polyaniline. Catal Lett 143, 531–538 (2013). https://doi.org/10.1007/s10562-013-1005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1005-7

Keywords

Navigation