Skip to main content
Log in

The Effect of PEGylated Dendrimers on the Catalytic Activity and Stability of Palladium Particles in the Suzuki Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Stable dendrimer-coated Pd particles were synthesized using the wet-chemical borohydride reduction method of Pd(II) salts in the presence of low-generation (poly)ethylene glycol-terminated amidoamine-based dendrimers. The identity and structure of the Pd-containing colloids were analyzed by FT-IR spectroscopy, X-ray powder diffraction, thermogravimetric analysis, atom absorption spectroscopy and UV–Vis spectroscopy. Dynamic light scattering experiments have been performed to determine the hydrodynamic diameter of the particles (350–900 nm). The performance of the thus obtained dendrimer-stabilized Pd particles in Suzuki C,C cross-coupling reactions of aryl halides and phenyl boronic acid was examined. Turn over numbers of up to 930 could be achieved. The influence of the dendritic stabilizers on the particle size along with the catalytic performance is presented.

Graphical Abstract

PAMAM PEGylated Pd particles were synthesized. The performance of the obtained Pd particles in Suzuki C,C cross-coupling reactions of aryl halides and phenyl boronic acid was examined, turn over numbers of up to 930 could be achieved. The influence of the dendritic stabilizers on the particles size along with the catalytic productivity is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Due to the partial formation of PdO a slight increase in weight of 1.5 wt% was observed.

  2. This agglomeration process was complete in the time required for the acquisition of the DLS measurements (approx. 5 minutes).

References

  1. Reetz M, Breinbauer R, Wanninger K (1996) Tetrahedron Lett 37:4499–4502

    Article  CAS  Google Scholar 

  2. Astruc D (2007) Inorg Chem 46:1884–1894

    Article  CAS  Google Scholar 

  3. Ohde H, Wai CM, Kim H, Kim J, Ohde M (2002) J Am Chem Soc 124:4540–4541

    Article  CAS  Google Scholar 

  4. Narayanan R, El-Sayed MA (2003) J Am Chem Soc 125:8340–8347

    Article  CAS  Google Scholar 

  5. Dutta P, Sarkar A (2011) Adv Synth Catal 353:2814–2822

    Article  CAS  Google Scholar 

  6. Huang W, Liu JH-C, Alayoglu P, Li Y, Witham CA, Tsung C-K, Toste FD, Somorjai GA (2010) J Am Chem Soc 132:16771–16773

    Article  CAS  Google Scholar 

  7. Kudo D, Masui Y, Onaka M (2007) Chem Lett 36:918–919

    Article  CAS  Google Scholar 

  8. Gniewek A, Ziolkowski J, Trzeciak A, Zawadzki M, Grabowska H, Wrzyszcz J (2008) J Catal 254:121–130

    Article  CAS  Google Scholar 

  9. Yoon B, Kim H, Wai CM (2003) Chem Commun 9:1040–1041

    Article  Google Scholar 

  10. Li Y, Hong XM, Collard DM, El-Sayed MA (2000) Org Lett 2:2385–2388

    Article  CAS  Google Scholar 

  11. Kim S-W, Kim M, Lee WY, Hyeon T (2002) J Am Chem Soc 124:7642–7643

    Article  CAS  Google Scholar 

  12. Balanta A, Godard C, Claver C (2011) Chem Soc Rev 40:4973–4985

    Article  CAS  Google Scholar 

  13. Devenish RW, Goulding T, Heaton BT, Whyman RJ (1996) Chem Soc Dalton Trans 5:673–679

    Article  Google Scholar 

  14. Cookson J (2012) Plat Met Rev 56:83–98

    Article  Google Scholar 

  15. Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877–4878

    Article  CAS  Google Scholar 

  16. Balogh L, Tomalia DA (1998) J Am Chem Soc 120:7355–7356

    Article  CAS  Google Scholar 

  17. Borkowski T, Subik P, Trzeciak AM, Wołowiec S (2011) Molecules 16:427–441

    Article  CAS  Google Scholar 

  18. Ratheesh Kumar VK, Gopidas KR (2011) Tetrahedron Lett 52:3102–3105

    Article  CAS  Google Scholar 

  19. Luo C, Zhang Y, Wang Y (2005) J Mol Catal A Chem 229:7–12

    Article  CAS  Google Scholar 

  20. Li Y, El-Sayed MA (2001) J Phys Chem B 105:8938–8943

    Article  CAS  Google Scholar 

  21. Dietrich S, Schulze S, Hietschold M, Lang H (2011) J Colloid Interface Sci 359:454–460

    Article  CAS  Google Scholar 

  22. Dietrich S, Chandra S, Georgi C, Thomas S, Makarov D, Schulze S, Hietschold M, Albrecht M, Bahadur D, Lang H (2012) Mat Chem Phys 132:292–299

    Article  CAS  Google Scholar 

  23. Tuchscherer A, Packheiser R, Rüffer T, Schletter H, Hietschold M, Lang H (2012) Eur J Inorg Chem 2012:02251–02258

    Article  CAS  Google Scholar 

  24. Tuchscherer A, Schaarschmidt D, Schulze S, Hietschold M, Lang H (2012) Dalton Trans 41:2738–2746

    Article  CAS  Google Scholar 

  25. Tuchscherer A, Schaarschmidt D, Schulze S, Hietschold M, Lang H (2011) Inorg Chem Commun 14:676–678

    Article  CAS  Google Scholar 

  26. Tuchscherer A, Schaarschmidt D, Schulze S, Hietschold M, Lang H (2011) Eur J Inorg Chem 2011:4421–4428

    Article  CAS  Google Scholar 

  27. Steffan M, Jakob A, Claus P, Lang H (2009) Catal Commun 10:437–441

    Article  CAS  Google Scholar 

  28. Schaarschmidt D, Lang H (2011) ACS Catalysis 1:411–416

    Article  CAS  Google Scholar 

  29. Schaarschmidt D, Lang H (2010) Catal Commun 11:581–583

    Article  CAS  Google Scholar 

  30. Jakob A, Milde B, Ecorchard P, Schreiner C, Lang H (2008) J Organomet Chem 693:3821–3830

    Article  CAS  Google Scholar 

  31. Lohan M, Milde B, Heider S, Speck JM, Krauße S, Schaarschmidt D, Rüffer T, Lang H (2012) Organometallics 31:2310–2326

    Article  CAS  Google Scholar 

  32. Milde B, Lohan M, Schreiner C, Rüffer T, Lang H (2011) Eur J Inorg Chem 2011:5437–5449

    Article  CAS  Google Scholar 

  33. Milde B, Schaarschmidt D, Rüffer T, Lang H (2012) Dalton Trans 41:5377–5390

    Article  CAS  Google Scholar 

  34. Milde B, Packheiser R, Hildebrandt S, Schaarschmidt D, Rüffer T, Lang H (2012) Organometallics 31:3661–3671

    Article  CAS  Google Scholar 

  35. Schaarschmidt D, Lang H (2010) Eur J Inorg Chem 2010:4811–4821

    Article  Google Scholar 

  36. Chandra S, Dietrich S, Lang H, Bahadur D (2011) J Mater Chem 21:5729–5737

    Article  CAS  Google Scholar 

  37. Adams R, Binder L (1941) J Am Chem Soc 63:2773–2776

    Google Scholar 

  38. Andersh B, Murphy DL, Olson R (2000) J Synth Commun 30:2091–2098

    Article  CAS  Google Scholar 

  39. Teranishi T, Miyake M (1998) Chem Mater 10:594–600

    Article  CAS  Google Scholar 

  40. Scott RWJ, Wilson OM, Crooks RM (2005) J Phys Chem B 109:692–704

    Article  CAS  Google Scholar 

  41. Guinier A (1994) X-ray diffraction in crystals, imperfect crystals and amorphous bodies. Dover Publications, New York

    Google Scholar 

  42. Diallo AK, Ornelas C, Salmon L, Ruiz Aranzaes J, Astruc D (2007) Angew Chem Int Ed 46:8644–8648

    Article  CAS  Google Scholar 

  43. Mejías N, Pleixats R, Shafir A, Medio-Simón M, Asensio G (2010) Eur J Org Chem 2010:5090–5099

    Article  Google Scholar 

  44. Han W, Liu C, Jin Z-L (2007) Org Lett 9:4005–4007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was generously supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the State of Saxony (Landesgraduierten fellowship SD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gäbler, C., Jeschke, J., Nurgazina, G. et al. The Effect of PEGylated Dendrimers on the Catalytic Activity and Stability of Palladium Particles in the Suzuki Reaction. Catal Lett 143, 317–323 (2013). https://doi.org/10.1007/s10562-013-0967-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-0967-9

Keywords

Navigation