Skip to main content
Log in

Low Pt Loading High Catalytic Performance of PtFeNi/Carbon Nanotubes Catalysts for CO Preferential Oxidation in Excess Hydrogen I: Promotion Effects of Fe and/or Ni

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The commercial carbon nanotubes (CNTs-o) and purified carbon nanotubes (CNTs-p) have been utilized to prepare Pt(FeNi)/CNTs catalysts for CO preferential oxidation (PROX) in H2 rich stream. The 3 wt%Pt0.41 %Fe 0.35 %Ni/CNTs-p catalyst after activation at 500 °C in H2 can almost completely remove CO at 6 °C in feed gas containing 1 % CO, 0.5 % O2 (volume ratio) and H2 balance. CNTs-o supported 3 wt% Pt can also remove CO almost completely at room temperature, after activation at 500 °C in the feed gas. And this catalyst can keep high activity, high selectivity and high stability for PROX of CO at room temperature. These catalysts are the most effective catalysts for PROX of CO with much lower Pt loading until so far. H-TPR, XRD, HRTEM and reaction results indicate that the Fe and/or Ni precursors have been reduced to metallic state after activation in H2 which can be oxidized to coordinatively unsaturated FeOx and/or NiOx active species after exposure to feed gas. XPS data point out that over oxidation of Fe and Pt species will deactivate the catalysts seriously. The high catalytic performance is mainly due to the promotion effects of in situ formed coordinatively unsaturated FeOx and/or NiOx species and the unique properties of CNTs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bing YH, Liu HS, Zhang L, Ghosh D, Zhang JJ (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39:2184–2202

    Article  CAS  Google Scholar 

  2. Devanathan R (2008) Recent developments in proton exchange membranes for fuel cells. Energy Environ Sci 1:101–119

    Article  CAS  Google Scholar 

  3. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B 88:1–24

    Article  CAS  Google Scholar 

  4. Shao YY, Sui JH, Yin GP, Gao YZ (2008) Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl Catal B 79:89–99

    Article  CAS  Google Scholar 

  5. Park ED, Lee D, Lee HC (2009) Recent progress in selective CO removal in a H2-rich stream. Catal Today 139:280–290

    Article  CAS  Google Scholar 

  6. Bion N, Epron F, Moreno M, Marino F, Duprez D (2008) Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over noble metals and transition metal oxides: advantages and drawbacks. Top Catal 51:76–88

    Article  CAS  Google Scholar 

  7. Bulushev DA, Yuranov I, Suvorova EI, Buffat PA, Kiwi-Minsker L (2004) Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation. J Catal 224:8–17

    Article  CAS  Google Scholar 

  8. Siani A, Alexeev OS, Lafaye G, Amiridis MD (2011) The effect of Fe on SiO2-supported Pt catalysts: structure, chemisorptive, and catalytic properties. J Catal 266:26–38

    Article  Google Scholar 

  9. Kotobuki M, Watanabe A, Uchida H, Yamashita H, Watanabe M (2005) Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe, and Pt–Fe/mordenite catalysts. J Catal 236:262–269

    Article  CAS  Google Scholar 

  10. Siani A, Captain B, Alexeev OS, Stafyla E, Hungria AB, Midgley PA et al (2006) Improved CO oxidation activity in the presence and absence of hydrogen over cluster-derived PtFe/SiO2 catalysts. Langmuir 22:5160–5167

    Article  CAS  Google Scholar 

  11. Fu Q, Li WX, Yao YX, Liu HY, Su HY, Ma D et al (2010) Interface-confined ferrous centers for catalytic oxidation. Science 328:1141–1144

    Article  CAS  Google Scholar 

  12. Wang C, Li B, Lin HQ, Yuan YZ (2012) Carbon nanotube-supported Pt-Co bimetallic catalysts for preferential oxidation of CO in a H2-rich stream with CO2 and H2O vapor. J Power Sources 202:200–208

    Article  CAS  Google Scholar 

  13. Ko EK, Park ED, Lee HC, Lee D, Kim S (2007) Supported Pt-Co catalysts for selective CO oxidation in a hydrogen-rich stream. Angew Chem Int Ed 46:734–737

    Article  CAS  Google Scholar 

  14. Ding ZX, Yang HY, Liu JF, Dai WX, Chen X, Wang XX, Fu XZ (2011) Promoted CO oxidation activity in the presence and absence of hydrogen over the TiO2-supported Pt/Co-B bicomponent catalyst. Appl Catal B 101:326–332

    Article  CAS  Google Scholar 

  15. Mu RT, Fu Q, Xu H, Zhang H, Huang YY, Jiang Z, Zhang S, Tan DL, Bao XH (2011) Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation. J Am Chem Soc 133:1978–1986

    Article  CAS  Google Scholar 

  16. Ko EY, Park ED, Seo KW, Lee HC, Lee D, Kim S (2006) Pt–Ni/γ-Al2O3 catalyst for the preferential CO oxidation in the hydrogen stream. Catal Lett 110:275–279

    Article  CAS  Google Scholar 

  17. Şimşek E, Özkara S, Aksoylu AE, Önsan ZI (2007) Preferential CO oxidation over activated carbon supported catalysts in H2-rich gas streams containing CO2 and H2O. Appl Catal A 316:169–174

    Article  Google Scholar 

  18. Gorke O, Pfeifer P (2011) Preferential CO oxidation over a platinum ceria alumina catalyst in a microchannel reactor. Int J Hydrogen Energy 36:4673–4681

    Article  Google Scholar 

  19. Ayastuy JL, González-Marcos MP, González-Velasco JR, Gutiérrez-Ortiz MA (2007) MnOx/Pt/Al2O3 catalysts for CO oxidation in H2-rich streams. Appl Catal B 70:532–541

    Article  CAS  Google Scholar 

  20. Tanaka H, Kuriyama M, Ishida Y, Ito SI, Tomishige K, Kunimori K (2008) Preferential CO oxidation in hydrogen-rich stream over Pt catalysts modified with alkali metals: part I. Catalytic performance. Appl Catal A 343:117–124

    Article  CAS  Google Scholar 

  21. Pedrero C, Waku T, Iglesia E (2005) Oxidation of CO in H2–CO mixtures catalyzed by platinum: alkali effects on rates and selectivity. J Catal 233:242–255

    Article  CAS  Google Scholar 

  22. Kuriyama M, Tanaka H, Ito SI, Kubota T, Miyao T, Naito S et al (2007) Promoting mechanism of potassium in preferential CO oxidation on Pt/Al2O3. J Catal 252:39–48

    Article  CAS  Google Scholar 

  23. Chen LM, Ma D, Bao XH (2007) Hydrogen treatment-induced surface reconstruction: formation of superoxide species on activated carbon over Ag/activated carbon catalysts for selective oxidation of CO in H2-rich gases. J Phys Chem C 111:2229–2234

    Article  CAS  Google Scholar 

  24. Chen LM, Ma D, Li XY, Bao XH (2006) Silver catalysts supported over activated carbons for the selective oxidation of CO in excess hydrogen: effects of different treatments on the supports. Catal Lett 111:133–139

    Article  CAS  Google Scholar 

  25. Zhang J, Liu X, Blume R, Zhang AH, Schlögl R, Su DS (2008) Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 322:73–77

    Article  CAS  Google Scholar 

  26. Zhang J, Comotti M, Schüth F, Schlögl R, Su DS (2007) Commercial Fe- or Co-containing carbon nanotubes as catalysts for NH3 decomposition. Chem Commun 19:1916–1918

    Article  Google Scholar 

  27. Guo SJ, Pan XL, Gao HL, Yang ZQ, Zhao JJ, Bao XH (2010) Probing the electronic effect of carbon nanotubes in catalysis: NH3 synthesis with Ru nanoparticles. Chem Eur J 16:5379–5384

    CAS  Google Scholar 

  28. Rodriguez NM, Kim MS, Baker RTK (1994) Carbon nanofibers: a unique catalyst support medium. J Phys Chem 98:13108–13111

    Article  CAS  Google Scholar 

  29. Hung V, Gonçalves F, Philippe R, Lamouroux E, Kihn MCY, Plee D et al (2006) Bimetallic catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde. J Catal 240:18–22

    Article  Google Scholar 

  30. Hofmann S, Blume R, Wirth CT, Cantoro M, Sharma R, Ducati C et al (2009) State of transition metal catalysts during carbon nanotube growth. J Phys Chem C 113:1648–1656

    Article  CAS  Google Scholar 

  31. Qu ZP, Cheng MJ, Shi C, Bao XH (2002) Effects of silver loading and pretreatment with reaction gas on CO selective oxidation in H2 over silver catalyst. Chin J Catal 23:460–464

    CAS  Google Scholar 

  32. Abbaslou RMM, Tavasoli A, Dalai AK (2009) Effect of pre-treatment on physico- chemical properties and stability of carbon nanotubes supported iron Fischer–Tropsch catalysts. Appl Catal A 355:33–41

    Article  Google Scholar 

  33. Silva LMS, Órfão JJM, Figueiredo JL (2001) Formation of two metal phases in the preparation of activated carbon-supported nickel catalysts. Appl Catal A 209:145–154

    Article  CAS  Google Scholar 

  34. Fraga MA, Jordão E, Mendes MJ, Freitas MMA, Faria JL, Figueiredo JL (2002) Properties of carbon-supported platinum catalysts: role of carbon surface sites. J Catal 209:355–364

    Article  CAS  Google Scholar 

  35. Mahata N, Gonçalves F, Pereira MFR, Figueiredo JL (2008) Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst. Appl Catal A 339:159–168

    Article  CAS  Google Scholar 

  36. Chen W, Pan XL, Bao XH (2007) Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. J Am Chem Soc 129:7421–7426

    Article  CAS  Google Scholar 

  37. Menning CA, Hwu HH, Chen JG (2006) Experimental and theoretical investigation of the stability of Pt-3d-Pt(111) bimetallic surfaces under oxygen environment. J Phys Chem B 110:15471–15477

    Article  CAS  Google Scholar 

  38. Ma T, Fu Q, Cui Y, Zhang Z, Wang Z, Tan DL, Bao XH et al (2010) Controlled transformation of the structures of surface Fe (FeO) and subsurface Fe on Pt(111). Chin J Catal 31:24–32

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Dr. Xinhe Bao and Dr. Xiulian Pan at Dalian Institute of Chemical Physics, Chinese Academy of Sciences, for their enthusiastic supervision and helpful discussions. This work is financially supported by the Natural Science Foundation of Guangdong Province, China (Grant No. S2011010000737), the Doctoral Fund of Ministry of Education of China (20110172120017), the Fundamental Research Funds for the Central Universities (Grant No. 2011zm 0048), and the Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences (No. Y007K1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Ma, D., Zhang, Z. et al. Low Pt Loading High Catalytic Performance of PtFeNi/Carbon Nanotubes Catalysts for CO Preferential Oxidation in Excess Hydrogen I: Promotion Effects of Fe and/or Ni. Catal Lett 142, 975–983 (2012). https://doi.org/10.1007/s10562-012-0850-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0850-0

Keywords

Navigation