Skip to main content

Advertisement

Log in

The First Case of Competitive Heterogeneously Catalyzed Hydrogenation using Continuous-Flow Fixed-Bed Reactor System: Hydrogenation of Binary Mixtures of Activated Ketones on Pt-Alumina and on Pt-Alumina-Cinchonidine Catalysts

Catalysis Letters Aims and scope Submit manuscript

Abstract

Under the experimental conditions of the Orito reaction the competitive hydrogenations of four binary mixtures of ethyl pyruvate (EP), methyl benzoylformate (MBF), pyruvic aldehyde dimethyl acetal (PA) and 2,2-diethoxyacetophenone (DAP) on unmodified Pt/Al2O3 (racemic hydrogenation) and catalyst modified by cinchonidine (chiral hydrogenation) were studied using continuous-flow fixed-bed reactor system (CFBR). Conversions of chiral and racemic hydrogenations were determined under 4 MPa H2 pressure, at 293 K using toluene/acetic acid 9/1 as solvent. In the competitive chiral hydrogenation of MBF + EP and DAP + PA binary mixtures (S1 + S2) a new phenomenon was observed: namely the EP and PA are hydrogenated faster than MBF and DAP, whereas in racemic one the MBF and DAP are hydrogenated faster than the former ketones. The phenomenon verified for the first time in CFBR is dependent on the adsorption mode of the surface complexes of various compositions (S1–Pt, S2–Pt, S1–CD–Pt, S2–CD–Pt, CD = cinchonidine). In the chiral hydrogenation of DAP a rate decrease, i.e., “ligand deceleration” was observed instead of rate enhancement.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Scheme 2

References

  1. Blaser HU, Müller M (1991) Stud Surf Sci Catal 59:73

    Article  CAS  Google Scholar 

  2. Jannes G, Dubois V (eds) (1995) Chiral reactions in heterogeneous catalysis. Plenum Press, New York

    Google Scholar 

  3. De Vos DE, Vankelecom IFJ, Jacobs PA (eds) (2000) Chiral catalyst immobilization and recycling. Wiley-VCH, Weinheim

    Google Scholar 

  4. Murzin DY, Maki-Arvela P, Toukoniitty E, Salmi T (2005) Catal Rev Sci Eng 47:175

    Article  CAS  Google Scholar 

  5. Heitbaum M, Glorius F, Escher I (2006) Angew Chem Int Ed 45:4732

    Article  CAS  Google Scholar 

  6. Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863

    Article  CAS  Google Scholar 

  7. Ding K, Uozumi Y (eds) (2008) Handbook of asymmetric heterogeneous catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  8. Hessel V, Schouten JC, Renken A, Wang Y, Yoshida J-I (eds) (2009) Handbook of micro reactors. Wiley-VCH, Weinheim

    Google Scholar 

  9. Luis SV, Garcia-Verdugo E (eds) (2010) Chemical reactions and processes under flow conditions. RSC Green Chemistry, London

    Google Scholar 

  10. Meheux PA, Ibbotson A, Wells PB (1991) J Catal 128:387

    Article  CAS  Google Scholar 

  11. Künzle N, Hess R, Mallat T, Baiker A (1999) J Catal 186:239

    Article  Google Scholar 

  12. You X, Li X, Xiang S, Zhang S, Xin Q, Li X, Li C (2000) Stud Surf Sci Catal 130:3375

    Article  Google Scholar 

  13. Li X, Li C (2001) Catal Lett 77:251

    Article  CAS  Google Scholar 

  14. Toukoniitty E, Murzin DYu (2004) Catal Lett 93:171

    Article  CAS  Google Scholar 

  15. Jenkins RL, McMorn P, Hutchings GJ (2005) Catal Lett 100:255

    Article  CAS  Google Scholar 

  16. Gao F, Chen L, Garland M (2006) J Catal 238:402

    Article  CAS  Google Scholar 

  17. Szöllősi Gy, Hermán B, Fülöp F, Bartók M (2006) React Kinet Catal Lett 88:391

    Article  Google Scholar 

  18. Toukoniitty E, Mäki-Arvela P, Kumar N, Salmi T, Murzin DYu (2004) Catal Lett 95:179

    Article  CAS  Google Scholar 

  19. Meier DM, Mallat T, Ferri D, Baiker A (2006) J Catal 244:260

    Article  CAS  Google Scholar 

  20. Szöllősi Gy, Cserényi Sz, Fülöp F, Bartók M (2008) J Catal 260:245

    Article  Google Scholar 

  21. Szöllősi Gy, Cserényi Sz, Bartók M (2010) Catal Lett 134:264

    Article  Google Scholar 

  22. Szöllősi G, Cserényi S, Bucsi I, Bartók T, Fülöp F, Bartók M (2010) Appl Catal A Gen 382:263

    Article  Google Scholar 

  23. Cserényi S, Szőllősi G, Szőri K, Fülöp F, Bartók M (2010) Catal Commun 12:14

    Article  Google Scholar 

  24. Orito Y, Imai S, Niwa S (1979) J Chem Soc Jpn 670:1118

    Google Scholar 

  25. Smith HA (1967) Ann NY Acad Sci 145:72

    Article  CAS  Google Scholar 

  26. Kieboom AP, van Bekkum H (1972) J Catal 25:342

    Article  CAS  Google Scholar 

  27. Kraus M (1980) Adv Catal 29:151

    Article  CAS  Google Scholar 

  28. Červený L, Ružička V (1981) Adv Catal 30:30

    Google Scholar 

  29. van Druten GMR, Ponec V (2000) Appl Catal A Gen 191:153

    Article  Google Scholar 

  30. Canning AS, Jackson SD, Monaghan A, Wright T (2006) Catal Today 116:22

    Article  CAS  Google Scholar 

  31. Krupka J, Severa Z, Pasek J (2006) React Kinet Catal Lett 89:359

    Article  CAS  Google Scholar 

  32. Balázsik K, Szőri K, Szőllősi Gy, Bartók M (2011) Chem Commun 47:1551

    Article  Google Scholar 

  33. Sugimura T, Uchida T, Watanabe J, Kubota T, Okamoto Y, Misaki T, Okuyama T (2009) J Catal 262:57

    Article  CAS  Google Scholar 

  34. Bartók M, Sutyinszki M, Felföldi K (2003) J Catal 220:207

    Article  Google Scholar 

  35. Bartók M, Sutyinszki M, Balázsik K, Szőllősi Gy (2005) Catal Lett 100:161

    Article  Google Scholar 

  36. Lavoie S, Laliberte MA, Temprano I, McBreen PH (2006) J Am Chem Soc 128:7588

    Article  CAS  Google Scholar 

  37. Blaser HU, Studer M (2007) Acc Chem Res 40:1348

    Article  CAS  Google Scholar 

  38. Zaera F (2008) J Phys Chem C 112:16196

    Article  CAS  Google Scholar 

  39. Tálas E, Margitfalvi JL (2009) Chirality 22:3

    Article  Google Scholar 

  40. Bartók M (2010) Chem Rev 110:1663

    Article  Google Scholar 

  41. Studer M, Burkhardt S, Blaser HU (1999) Chem Commun 1727

  42. Balázsik K, Bartók M (2004) J Catal 224:463

    Article  Google Scholar 

  43. Török B, Felföldi K, Szakonyi G, Bartók M (1997) Ultrason Sonochem 4:301

    Article  Google Scholar 

  44. Bakos I, Szabó S, Bartók M, Kálmán E (2002) J Electroanal Chem 532:113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Hungarian National Science Foundation (OTKA Grant K 72065) is highly appreciated. The study was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (Gy. Szőllősi).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to György Szőllősi or Mihály Bartók.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szőllősi, G., Makra, Z., Fülöp, F. et al. The First Case of Competitive Heterogeneously Catalyzed Hydrogenation using Continuous-Flow Fixed-Bed Reactor System: Hydrogenation of Binary Mixtures of Activated Ketones on Pt-Alumina and on Pt-Alumina-Cinchonidine Catalysts. Catal Lett 141, 1616–1620 (2011). https://doi.org/10.1007/s10562-011-0705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0705-0

Keywords

Navigation