Skip to main content
Log in

Low Temperature Water–Gas Shift: Alkali Doping to Facilitate Formate C–H Bond Cleaving over Pt/Ceria Catalysts—An Optimization Problem

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Doping Pt/ceria catalysts with alkali metals was found to lead to an important weakening of the formate C–H bond, as demonstrated by a shift to lower wavenumbers of the ν(CH) vibrational mode. However, with high alkalinity (∼2.5%Na or equimolar amounts of K, Rb, or Cs), a tradeoff was observed such that while the formate became more reactive, the stability of the carbonate species, which arises from the formate decomposition, was found to increase. This was observed by TPD-MS measurements of the adsorbed CO2 probe molecule. Increasing the amount of alkali to levels that were too high also led to lower catalyst BET surface area, the blocking of the Pt surface sites as observed in infrared measurements, and also a shift to higher temperature of the surface shell reduction step of ceria during TPR. When the alkalinity was too high, the CO conversion rate during water–gas shift decreased in comparison with the undoped Pt/ceria catalyst. However, at lower levels of alkali, the abovementioned inhibiting factors on the water–gas shift rate were alleviated such that the weakening of the formate C–H bond could be utilized to improve the overall turnover efficiency during the water–gas shift cycle. This was demonstrated at 0.5%Na (or equimolar equivalent levels of K) doping levels. Not only was the formate turnover rate found to increase significantly during both transient and steady state DRIFTS tests, but this effect was accompanied by a notable increase in the CO conversion rate during low temperature water–gas shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sato S, White JM (1980) J Am Chem Soc 102:7206

    Article  CAS  Google Scholar 

  2. Wagner FT, Somorjai GA (1980) J Am Chem Soc 102:5494

    Article  CAS  Google Scholar 

  3. Sato S, White JM (1981) J Catal 69:128

    Article  CAS  Google Scholar 

  4. Vedage GA, Pitchai R, Herman RG, Klier K (1984) Proc. 8th Internat. Congress on Catal., Berlin, Germany, p 47

  5. Klier K (1992) Catal Today 15:361

    Article  CAS  Google Scholar 

  6. Campbell CT, Koel BE, Daube KA (1987) J Vac Sci Technol A 5:810

    Article  CAS  Google Scholar 

  7. Campbell JM, Nakamura J, Campbell CT (1992) J Catal 136:24

    Article  CAS  Google Scholar 

  8. Basinska A, Domka F (1993) Catal Lett 17:327

    Article  CAS  Google Scholar 

  9. Basinska A, Domka F (1997) Catal Lett 43:59

    Article  CAS  Google Scholar 

  10. Jozwiak WK, Basinska A, Goralski J, Maniecki TP, Kincle D, Domka F (2000) Stud Surf Sci Catal 130:3819

    Article  Google Scholar 

  11. Luukkanen S, Homanen P, Haukka M, Pakkanen TA, Deronzier A, Chardon-Noblat S, Zsoldos D, Ziessel R (1999) Appl Catal 185:157

    Article  CAS  Google Scholar 

  12. Luukkanen S, Haukka M, Kallinen M, Pakkanen TA (2000) Catal Lett 70:123

    Article  CAS  Google Scholar 

  13. Brooks CJ, Hagemeyer A, Yaccato K, Carhart R, Herrmann M (2005) 19th North Am. Catal. Soc. Meeting, May 22–27, Philadelphia, Pennsylvania, USA

  14. Yaccato K, Carhart R, Hagemeyer AG, Herrmann M, Lesik A, Strasser P, Turner H, Volpe1 AF, Weinberg H, Brooks CJ (2006) AIChE Spring National Meeting April 23–27, 2006, Orlando, FL

  15. Pigos JM, Brooks CJ, Jacobs G, Davis BH (2006) Prepr Am Chem Soc Div Pet Chem

  16. Pigos JM, Brooks CJ, Jacobs G, Davis BH (2006) Evidence of enhanced LTS water–gas shift rate with Sodium promoted Pt-ZrO2-based catalyst discovered by combinatorial methods, AIChE Annual Meeting abstract

  17. Shido T, Iwasawa Y (1993) J Catal 141:71

    Article  CAS  Google Scholar 

  18. Pigos JM, Brooks CJ, Jacobs G, Davis BH (2007) Appl Catal A: General 319:47

    Article  CAS  Google Scholar 

  19. Pigos JM, Brooks CJ, Jacobs G, Davis BH Appl Catal A: General, (in press)

  20. Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Appl Catal B 27:179

    Article  Google Scholar 

  21. Lavalley JC (1996) Catal Today 27:377

    Article  CAS  Google Scholar 

  22. Yao HC, Yu Yao YF (1984) J Catal 86:254

    Article  CAS  Google Scholar 

  23. Laachir A, Perrichon V, Badri A, Lamotte J, Catherine E, Lavalley JC, El Fallah J, Hilaire L, Le Normand F, Quemere E, Sauvion GN, Touret O (1991) J Chem Soc Faraday Trans 87:1601

    Article  CAS  Google Scholar 

  24. Jacobs G, Graham UM, Chenu E, Patterson PM, Dozier A, Davis BH (2005) J Catal 229:499

    Article  CAS  Google Scholar 

  25. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A: General 233:263

    Article  CAS  Google Scholar 

  26. Binet C, Daturi M, Lavalley JC (1999) Catal Today 50:207

    Article  CAS  Google Scholar 

  27. Shido T, Iwasawa Y (1992) J Catal 136:493

    Article  CAS  Google Scholar 

  28. Li C, Sakata Y, Arai T, Domen K, Maruya KI, Onishi T (1989) J Chem Soc Faraday Trans I 85:1451

    Article  CAS  Google Scholar 

  29. Tabakova T, Boccuzzi F, Manzoli M, Idakiev V, Andreeva D (2003) Appl Catal A: General 252:385

    Article  CAS  Google Scholar 

  30. Fukunaga T, Ponec V (1997) Appl Catal A: General 154:207

    Article  CAS  Google Scholar 

  31. Larsen G, Haller GL (1989) Catal Lett 3:103

    Article  Google Scholar 

  32. Holmgren A, Anderson B, Duprez D (1999) Appl Catal B 22:215

    Article  CAS  Google Scholar 

  33. Mojet BL, Miller JT, Koningsberger DC (1999) J Phys Chem B 103:2724

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work was sponsored by the Commonwealth of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evin, H.N., Jacobs, G., Ruiz-Martinez, J. et al. Low Temperature Water–Gas Shift: Alkali Doping to Facilitate Formate C–H Bond Cleaving over Pt/Ceria Catalysts—An Optimization Problem. Catal Lett 120, 166–178 (2008). https://doi.org/10.1007/s10562-007-9297-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9297-0

Keywords

Navigation