Skip to main content

Advertisement

Log in

Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Hydrogenolysis of biomass-derived glycerol is an alternative route to sustainable production of propylene glycol. Cu–ZnO catalysts were prepared by coprecipitation with a range of Cu/Zn atomic ratio (0.6–2.0) and examined in glycerol hydrogenolysis to propylene glycol at 453–513 K and 4.2 MPa H2. These catalysts possess acid and hydrogenation sites required for bifunctional glycerol reaction pathways, most likely involving glycerol dehydration to acetol and glycidol intermediates on acidic ZnO surfaces, and their subsequent hydrogenation on Cu surfaces. Glycerol hydrogenolysis conversions and selectivities depend on Cu and ZnO particle sizes. Smaller ZnO and Cu domains led to higher conversions and propylene glycol selectivities, respectively. A high propylene glycol selectivity (83.6%), with a 94.3% combined selectivity to propylene glycol and ethylene glycol (also a valuable product) was achieved at 22.5% glycerol conversion at 473 K on Cu–ZnO (Cu/Zn = 1.0) with relatively small Cu particles. Reaction temperature effects showed that optimal temperatures (e.g. 493 K) are required for high propylene glycol selectivities, probably as a result of optimized adsorption and transformation of the reaction intermediates on the catalyst surfaces. These preliminary results provide guidance for the synthesis of more efficient Cu–ZnO catalysts and for the optimization of reaction parameters for selective glycerol hydrogenolysis to produce propylene glycol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Scheme 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. R.D. Cortright, M. Sanchez-Castillo and J.A. Dumesic, Appl. Catal. B 39 (2002) 353.

    Article  CAS  Google Scholar 

  2. J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel and C. Rosier, Green Chem. 6 (2004) 359.

    Article  CAS  Google Scholar 

  3. M.A. Dasari, P.-P. Kiatsimkul, W.R. Sutterlin and G.J. Suppes, Appl. Catal. A 281 (2005) 225.

    Article  CAS  Google Scholar 

  4. A. Perosa and P. Tundo, Ind. Eng. Chem. Res. 44 (2005) 8535.

    Article  CAS  Google Scholar 

  5. C.-W. Chiu, M.A. Dasari, W.R. Sutterlin and G.J. Suppes, Ind. Eng. Chem. Res. 45 (2006) 791.

    Article  CAS  Google Scholar 

  6. Y. Kusunoki, T. Miyazawa, K. Kunimori, K. Tomishige, Catal. Commun. 6 (2005) 645.

    Article  CAS  Google Scholar 

  7. B. Casale and A.M. Gomze U.S. Patent 5 (1993) 214.

    Google Scholar 

  8. T. Miyazawa, Y. Kusunoki, K. Kunimori and K.J. Tomishige Catalysis 240 (2006) 213.

    Article  CAS  Google Scholar 

  9. C. Montassier, J.M. Dumas, P. Granger and J. Barbier, Appl. Catal. A 121 (1995) 231.

    Article  CAS  Google Scholar 

  10. G.J. de A. A. Soler-Illia, R.J. Candal, A.E. Regazzoni and M.A. Blesa, Chem. Mater. 9 (1997) 184.

    Article  Google Scholar 

  11. T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano and K. Takehira, Appl. Catal. A 303 (2006) 62.

    Article  CAS  Google Scholar 

  12. A. Guinier, Theorie et Technique de la Radiocristallographie, 3rd edn., Paris, 1964, p. 482.

  13. M.R. Nimlos, S.J. Blanksby, X. Qian, M.E. Himmel and D.K. Johnson, J. Phys. Chem. A 110 (2006) 6145.

    Article  CAS  Google Scholar 

  14. Q. Li, L. Gao, W. Luan and D. Yan, J. Inorg. Mater (China). 14 (1999) 813.

    CAS  Google Scholar 

  15. P.C. Hiemenz, Principles of Colloid and Surface Chemistry. New York: Marcel Dekker Inc., 1986.

Download references

Acknowledgments

This work was supported by the National Basic Research Project of China (No.2006CB806100) and National Natural Science Foundation of China (Grant No. 20673005, 20573004). This work was also supported in part by Program for New Century Excellent Talents in University (NECT-05–0010), State Education Ministry. The authors thank Professor E. Min of SINOPEC for his insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Liu, H. Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts. Catal Lett 117, 62–67 (2007). https://doi.org/10.1007/s10562-007-9106-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9106-9

Keywords

Navigation