Skip to main content

Advertisement

Log in

Optimizing amniotic membrane tissue banking protocols for ophthalmic use

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Amniotic membrane (AM) due to its anti-inflammatory, anti-scarring and anti-angiogenic properties is used as corneal and wound grafts. When developing AM tissue banks, cell viability, membrane morphology and genomic stability should be preserved following cryopreservation. To analyze the changes rendered to the AM during the process of cryopreservation by comparing different combinations of standard cryopreservation media; fetal bovine serum (FBS), dimethyl sulfoxide (DMSO), Dulbecco’s modified eagle’s medium (DMEM) and glycerol at −80 °C and at −196 °C for a period of 6 weeks and at 4 °C in 70 % alcohol for 6 weeks. Following informed consent, placentae of healthy term pregnancies delivered by elective Cesarean section were collected and AM separated into 5 × 5 cm size sections and under sterile conditions stored in 9:1 DMSO:FBS and 1:1 DMEM:Glycerol at −196 and −80 °C for 6 weeks. Similar sections were also stored at 4 °C in 70 % alcohol for 6 weeks. After storage periods following were assessed; AM epithelial cell viability by trypan blue vital stain, epithelial cell proliferation capacity by cell doubling time, membrane morphology by haematoxylin and eosin (H&E) stain and genomic stability by conventional G-banded karyotyping. Human amniotic epithelial cells were cultured in DMEM and 10 % FBS in humidified atmosphere of 5 % carbon dioxide at 37 °C and were characterized using RT-PCR for Octamer-binding protein 4 (Oct-4) and glucose-6-phosphate dehydrogenase (G6PD) genes. All the above parameters were also assessed in fresh AM. AM obtained from 4 term placentae. Mean cell count and mean cell doubling times in days respectively; for fresh AM 3.8 × 106; 1.59, after 6 weeks in DMSO:FBS at −196 °C 3.0 × 106; 2.38 and at −80 °C 2.1 × 106; 1.60, in DMEM:Glycerol at −196 °C 3.6 × 106; 2.33 at −80 °C 23 × 106; 1.66 and at 4 °C 3.3 × 106; 2.14. Histology analysis of the fresh AM showed an intact epithelial monolayer, thick basement membrane (BM) and avascular stromal matrix. Amniotic membranes stored at −196 °C showed morphology similar to fresh AM in both preservation media and AM stored at −80 °C showed disruption of the stromal matrix. At 4 °C the epithelial monolayer showed flattening. Fresh AM karyotype was 46XX. Analyzable spreads for karyotype were not obtained from stored AMs. Human amniotic epithelial cells were positive for both Oct-4 and G6PD genes. AM is best preserved at −196 °C either in 1:9 DMSO:FBS or 1:1 DMEM:Glycerol. In both conditions cell viability and membrane integrity were shown to be preserved up to 6 weeks. Since analyzable chromosome spreads from cell cultures were not obtained, genomic stability could not be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akle CA, Welsh KI, Adinolfi M, Leibowitz S, McColl I (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. The Lancet 318(8254):1003–1005

    Article  Google Scholar 

  • Allen CL, Clare G, Stewart EA, Branch MJ, McIntosh OD, Dadhwal M, Dua HS, Hopkinson A (2013) Augmented dried versus cryopreserved amniotic membrane as an ocular surface dressing. PLoS ONE 8(10):e78441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benirschke K, Kaufmann P (2000) Pathology of the human placenta. Springer, Berlin

    Book  Google Scholar 

  • Burman S, Tejwani S, Vemuganti GK, Gopinathan U, Sangwan VS (2004) Ophthalmic applications of preserved human amniotic membrane: a review of current indications. Cell Tissue Bank 5(3):161–175

    Article  PubMed  Google Scholar 

  • Cappellini MD, Fiorelli G (2008) Glucose-6-phosphate dehydrogenase deficiency. The Lancet 371(9606):64–74

    Article  CAS  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655

    Article  CAS  PubMed  Google Scholar 

  • Cirman T, Beltram M, Schollmayer P, Rožman P, Kreft ME (2014) Amniotic membrane properties and current practice of amniotic membrane use in ophthalmology in Slovenia. Cell Tissue Bank 15(2):177–192

    Article  CAS  PubMed  Google Scholar 

  • De Rötth A (1940) Plastic repair of conjunctival defects with fetal membranes. Arch Ophthalmol 23(3):522–525

    Article  Google Scholar 

  • Dobreva MP, Pereira PN, Deprest J, Zwijsen A (2010) On the origin of amniotic stem cells: of mice and men. Int J Dev Biol 54(5):761–777

    Article  CAS  Google Scholar 

  • Dua HS (1999) Amniotic membrane transplantation. Br J Ophthalmol 83(6):748–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetterolf DE, Snyder RJ (2012) Scientific and clinical support for the use of dehydrated amniotic membrane in wound management. Wounds Compend Clin Res Pract 24(10):299–307

    Google Scholar 

  • Gomes JA, dos Santos MS, Cunha MC, de Nadai Barros J, de Sousa LB (2003) Amniotic membrane transplantation for partial and total limbal stem cell deficiency secondary to chemical burn. Ophthalmology 110(3):466–473

    Article  Google Scholar 

  • Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19(3):348–352

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25(3):585–621

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Yang Q, Ji F, Zhang YJ, Zhao Y, Luo M (2015) Human amniotic epithelial cell transplantation for the repair of injured brachial plexus nerve: evaluation of nerve viscoelastic properties. Neural Regen Res 10(2):260

    Article  PubMed  PubMed Central  Google Scholar 

  • John T (2003) Human amniotic membrane transplantation. Ophthalmol Clin 16(1):43–65

    Google Scholar 

  • Kim JC, Tseng SC (1995) Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea 14(5):473–484

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kim JC, Na BK, Jeong JM, Song CY (2000) Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res 70(3):329–337

    Article  CAS  PubMed  Google Scholar 

  • Koizumi N, Fullwood NJ, Bairaktaris G, Inatomi T, Kinoshita S, Quantock AJ (2000) Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane. Invest Ophthalmol Vis Sci 41(9):2506–2513

    CAS  PubMed  Google Scholar 

  • Lee SH, Tseng SC (1997) Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol 123(3):303–312

    Article  CAS  PubMed  Google Scholar 

  • Libera RD, Melo GB, Lima AD, Haapalainen EF, Cristovam P, Gomes JÁ (2008) Assessment of the use of cryopreserved x freeze-dried amniotic membrane (AM) for reconstruction of ocular surface in rabbit model. Arquivos brasileiros de oftalmologia 71(5):669–673

    Article  PubMed  Google Scholar 

  • Liu J, Sheha H, Fu Y, Liang L, Tseng SC (2010) Update on amniotic membrane transplantation. Expert Rev Ophthalmol 5(5):645–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund RO (1957) Continuous cultivation of epithelial cell strain (FL) from human amniotic membrane. Exp Biol Med 94(3):532–537

    Article  Google Scholar 

  • Madhavan HN, Priya K, Malathi J, Joseph PR (2002) Preparation of amniotic membrane for ocular surface reconstruction. Indian J Ophthalmol 50(3):227

    PubMed  Google Scholar 

  • Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23(10):1549–1559

    Article  CAS  PubMed  Google Scholar 

  • Mills B, Arrington JB, Sobin LH (eds) (1992) Laboratory methods in histotechnology. Am Regist Pathol, Washington, DC

    Google Scholar 

  • Nakamura T, Yoshitani M, Rigby H, Fullwood NJ, Ito W, Inatomi T, Sotozono C, Nakamura T, Shimizu Y, Kinoshita S (2004) Sterilized, freeze-dried amniotic membrane: a useful substrate for ocular surface reconstruction. Invest Ophthalmol Vis Sci 45(1):93–99

    Article  PubMed  Google Scholar 

  • Narayan RP (2012) Development of tissue bank. Indian J Plast Surg Off Publ Assoc Plastic Surg India 45(2):396

    Article  CAS  Google Scholar 

  • Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26(2):300–311

    Article  PubMed  Google Scholar 

  • Rahman I, Said DG, Maharajan VS, Dua HS (2009) Amniotic membrane in ophthalmology: indications and limitations. Eye. 23(10):1954–1961

    Article  CAS  PubMed  Google Scholar 

  • Ravishanker R, Bath AS, Roy R (2003) “Amnion Bank”—the use of long term glycerol preserved amniotic membranes in the management of superficial and superficial partial thickness burns. Burns 29(4):369–374

    Article  CAS  PubMed  Google Scholar 

  • Ryan JM, Pettit AR, Guillot PV, Chan JK, Fisk NM (2013) Unravelling the pluripotency paradox in fetal and placental mesenchymal stem cells: oct-4 expression and the case of the emperor’s new clothes. Stem Cell Rev Rep 9(4):408–421

    Article  CAS  Google Scholar 

  • Shimazaki J, Yang HY, Tsubota K (1997) Amniotic membrane transplantation for ocular surface reconstruction in patients with chemical and thermal burns. Ophthalmology 104(12):2068–2076

    Article  CAS  PubMed  Google Scholar 

  • Tabatabaei M, Mosaffa N, Nikoo S, Bozorgmehr M, Ghods R, Kazemnejad S, Rezania S, Keshavarzi B, Arefi S, Ramezani-Tehrani F, Mirzadegan E, Zarnani A-H (2014) Isolation and partial characterization of human amniotic epithelial cells: the effect of trypsin. Avicenna J Med Biotechnol 6(1):10–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan EK, Cooke M, Mandrycky C, Mahabole M, He H, O’Connell J, McDevitt TC, Tseng SC (2014) Structural and biological comparison of cryopreserved and fresh amniotic membrane tissues. J Biomater Tissue Eng 4(5):379–388

    Article  CAS  Google Scholar 

  • Thomasen H, Pauklin M, Steuhl KP, Meller D (2009) Comparison of cryopreserved and air-dried human amniotic membrane for ophthalmologic applications. Graefe’s Arch Clin Exp Ophthalmol 247(12):1691–1700

    Article  Google Scholar 

  • Tseng SC, Scheffer CG (2000) Grafts made from amniotic membrane; methods of separating, preserving, and using such grafts in surgeries. United States patent US 6,152,142

  • Tsubota K, Satake Y, Ohyama M, Toda I, Takano Y, Ono M, Shinozaki N, Shimazaki J (1996) Surgical reconstruction of the ocular surface in advanced ocular cicatricial pemphigoid and Stevens-Johnson syndrome. Am J Ophthalmol 122(1):38–52

    Article  CAS  PubMed  Google Scholar 

  • van Herendael B, Oberti C, Brosens I (1978) Microanatomy of the human amniotic membranes. A light microscopic, transmission, and scanning electron microscopic study. Am J Obstet Gynecol 131(8):872–880

    PubMed  Google Scholar 

  • Visuthikosol V, Somna R, Nitiyanant P, Navikarn T (1992) The preparation of lyophylised of fetal membrane for biological dressing. J Med Assoc Thail Chotmaihet thangphaet 75:52

    Google Scholar 

  • Wu Z, Hui G, Lu Y, Liu T, Huang Q, Guo L (2012) Human amniotic epithelial cells express specific markers of nerve cells and migrate along the nerve fibers in the corpus callosum. Neural Regen Res 7(1):41

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. Imalki Kariyawasam along with the enthusiastic staff at the Human Genetic Unit, Faculty of Medicine Colombo. We also wish to thank the faculty members at Manipal Institute of Regenerative Medicine (MIRM), Banglore. A special thanks to Prof. Ramesh Bonde for his guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. W. W. Goonasekera.

Ethics declarations

Conflict of interest

We declare there were no conflicts of interest related to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hettiarachchi, D., Dissanayake, V.H.W. & Goonasekera, H.W.W. Optimizing amniotic membrane tissue banking protocols for ophthalmic use. Cell Tissue Bank 17, 387–397 (2016). https://doi.org/10.1007/s10561-016-9568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-016-9568-3

Keywords

Navigation