Skip to main content

Advertisement

Log in

Isolation of three important types of stem cells from the same samples of banked umbilical cord blood

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

It is known that umbilical cord blood (UCB) is a rich source of stem cells with practical and ethical advantages. Three important types of stem cells which can be harvested from umbilical cord blood and used in disease treatment are hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). Since these stem cells have shown enormous potential in regenerative medicine, numerous umbilical cord blood banks have been established. In this study, we examined the ability of banked UCB collected to produce three types of stem cells from the same samples with characteristics of HSCs, MSCs and EPCs. We were able to obtain homogeneous plastic rapidly-adherent cells (with characteristics of MSCs), slowly-adherent (with characteristics of EPCs) and non-adherent cells (with characteristics of HSCs) from the mononuclear cell fractions of cryopreserved UCB. Using a protocol of 48 h supernatant transferring, we successfully isolated MSCs which expressed CD13, CD44 and CD90 while CD34, CD45 and CD133 negative, had typical fibroblast-like shape, and was able to differentiate into adipocytes; EPCs which were CD34, and CD90 positive, CD13, CD44, CD45 and CD133 negative, adherent with cobble-like shape; HSCs which formed colonies when cultured in MethoCult medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aoki M, Yasutake M, Murohara T (2004) Derivation of functional endothelial progenitor cells from human umbilical card blood mononuclear cells isolated by a novel cell filtration device. Stem Cells 22:994–1002

    Article  PubMed  CAS  Google Scholar 

  • Barachini S, Trombi L, Danti S et al (2009) Morpho-functional characterization of human mesenchymal stem cells from umbilical cord blood for potential uses in regenerative medicine. Stem Cells Dev 18(2):293–305

    Article  PubMed  Google Scholar 

  • Bompais H, Chagraoui J, Canron X et al (2004) Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 103:2577–2584

    Article  PubMed  CAS  Google Scholar 

  • Bradley MB, Cairo MS (2005) Cord blood immunology and stem cell transplantation. Hum Immunol 66:431–446

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer HE, Douglas GW, Hangoc G et al (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 86:3828–3832

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer HE, Hangoc G, Cooper S et al (1992) Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation of adults. Proc Natl Acad Sci USA 89:4109–4113

    Article  PubMed  CAS  Google Scholar 

  • Cardoso AA, Li ML, Batard P et al (1993) Release from quiescence of CD34+CD38–human umbilical cord blood cells reveals their potentiality to engraft adults. Proc Natl Acad Sci USA 90:8707–8711

    Article  PubMed  CAS  Google Scholar 

  • Carow C, Hangoc G, Cooper S et al (1991) Mast cell growth factor (c-kit ligand) supports the growth of human multipotential (CFU-GEMM) progenitor cells with a high replating potential. Blood 78:2216–2221

    PubMed  CAS  Google Scholar 

  • Carow CE, Hangoc G, Broxmeyer HE (1993) Human multipotential progenitor cells (CFU‐GEMM) have extensive replating capacity for secondary CFU-GEMM: an effect enhanced by cord blood plasma. Blood 81:942–949

    PubMed  CAS  Google Scholar 

  • Crisa L, Cirulli V, Smith KA et al (1990) Human cord blood progenitors sustain thymic T-cell development and a novel form of angiogenesis. Blood 94:3928–3940

    Google Scholar 

  • Delalat B, Pourfathollah AA, Soleimani M, Mozdarani H, Ghaemi SR, Movassaghpour AA, Kaviani S (2009) Isolation and ex vivo expansion of human umbilical cord blood-derived CD34+ stem cells and their cotransplantation with or without mesenchymal stem cells. Hematology 14(3):125–132

    Article  PubMed  Google Scholar 

  • Eggermann J, Kliche S, Jarmy G et al (2003) Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood. Cardiovasc Res 58:478–486

    Article  PubMed  CAS  Google Scholar 

  • Fan CL, Li Y, Gao PJ, Liu JJ et al (2003) Differentiation of endothelial progenitor cells from human umbilical cord blood CD 34+ cells in vitro. Acta Pharmacol Sin 24:212–218

    PubMed  CAS  Google Scholar 

  • Gluckman E, Broxmeyer HA, Auerbach AD et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321:1174–1178

    Article  PubMed  CAS  Google Scholar 

  • Gluckman E, Koegler G, Rocha V (2005) Human leukocyte antigen matching in cord blood transplantation. Semin Hematol 42:85–89

    Article  PubMed  CAS  Google Scholar 

  • Hildbrand P, Cirulli V, Prinsen RC et al (2004) The role of angiopoietins in the development of endothelial cells from cord blood CD34+ progenitors. Blood 104:2010–2019

    Article  PubMed  CAS  Google Scholar 

  • Ingram D, Mead L, Tanaka H et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    Article  PubMed  CAS  Google Scholar 

  • Kang HJ, Kim SC, Kim YJ et al (2001) Short-term phytohaemagglutinin-activated mononuclear cells induce endothelial progenitor cells from cord blood CD34+ cells. Br J Haematol 113:962–969

    Article  PubMed  CAS  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301

    Article  PubMed  CAS  Google Scholar 

  • Koponen JK, Kekarainen T, Heinonen SE et al (2007) Umbilical cord blood–derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model. Mol Ther 15(12):2172–2177

    Article  PubMed  CAS  Google Scholar 

  • Lansdorp PM, Dragowska W, Mayani H (1993) Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med 178:787–791

    Article  PubMed  CAS  Google Scholar 

  • Lee MW, Choi J, Yang MS et al (2004a) Mesenchymal stem cells from cryopreserved human umbilical cord blood. Biochem Biophys Res Commun 320(1):273–278

    Article  PubMed  CAS  Google Scholar 

  • Lee OK, Kuo TK, Chen WM et al (2004b) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Lee MW, Yang MS, Park JS, Kim HC, Kim YJ, Choi J (2005) Isolation of mesenchymal stem cells from cryopreserved human umbilical cord blood. Int J Hematol 81(2):126–130

    Article  PubMed  Google Scholar 

  • Lin RZ, Dreyzin A, Aamodt K, Dudley AC, Melero-Martin JM (2010) Functional endothelial progenitor cells from cryopreserved umbilical cord blood. Cell Transplant. [Epub ahead of print]

  • Majeti R, Park CY, Weissman IL (2007) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1(6):635–645

    Article  PubMed  CAS  Google Scholar 

  • Manca MF, Zwart I, Beo J et al (2008) Characterization of mesenchymal stromal cells derived from full-term umbilical cord blood. Cytotherapy 10(1):54–68

    Article  PubMed  CAS  Google Scholar 

  • McNiece I, Kubegov D, Kerzic P et al (2000) Increased expansion and differentiation of cord blood products using a two-step expansion culture. Exp Hematol 28:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Murga M, Yao L, Tosato G (2004a) Derivation of endothelial cells from CD34- umbilical cord blood. Stem Cells 22(3):385–395

    Article  PubMed  CAS  Google Scholar 

  • Murga M, Yao L, Tosato G (2004b) Derivation of endothelial cells from CD34–umbilical cord blood. Stem Cells 22:385–395

    Article  PubMed  CAS  Google Scholar 

  • Peichev M, Naiyer A, Pereira D et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95:952–958

    PubMed  CAS  Google Scholar 

  • Pesce M, Orlandi A, Iachininoto MG (2003) Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 93:e51–e62

    Article  PubMed  Google Scholar 

  • Peters R, Wolf MJ, van den Broek M, Nuvolone M, Dannenmann S, Stieger B, Rapold R, Konrad D, Rubin A, Bertino JR, Aguzzi A, Heikenwalder M, Knuth AK (2010) Efficient generation of multipotent mesenchymal stem cells from umbilical cord blood in stroma-free liquid culture. PLoS One 5(12):e15689

    Article  PubMed  Google Scholar 

  • Phuc PV, Nhung TH, Loan DT, Chung DC, Ngoc PK (2011) Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells. In Vitro Cell Dev Biol Anim 47(1):54–63

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D, Breymann C, Weber A et al (2004) Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg 78:2094–2098

    Article  PubMed  Google Scholar 

  • Shin JW, Lee DW, Kim MJ, Song KS, Kim HS, Kim HO (2005) Isolation of endothelial progenitor cells from cord blood and induction of differentiation by ex vivo expansion. Yonsei Med J 46(2):260–267

    Article  PubMed  Google Scholar 

  • Simons M (2005) Angiogenesis: where do we stand now? Circulation 111:1556–1566

    Article  PubMed  Google Scholar 

  • Spring FA, Dalchau R, Daniels GL et al (1988) The Ina and Inb blood group antigens are located on a glycoprotein of 80, 000 MW (the CDw44 glycoprotein) whose expression is influenced by the In(Lu) gene. Immunology 64(1):37–43

    PubMed  CAS  Google Scholar 

  • Taura D, Noguchi M, Sone M, Hosoda K, Mori E, Okada Y, Takahashi K, Homma K, Oyamada N, Inuzuka M, Sonoyama T, Ebihara K, Tamura N, Itoh H, Suemori H, Nakatsuji N, Okano H, Yamanaka S, Nakao K (2009) Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS lett 583:1029

    Article  PubMed  CAS  Google Scholar 

  • Vanneaux V, El-Ayoubi F, Delmau C, Driancourt C, Lecourt S, Grelier A, Cras A, Cuccuini W, Soulier J, Lataillade JJ, Lebousse-Kerdiles MC, Oury JF, Sibony O, Marolleau JP, Benbunan M, Uzan G, Larghero J (2010) In vitro and in vivo analysis of endothelial progenitor cells from cryopreserved umbilical cord blood: are we ready for clinical application? Cell Transplant 19(9):1143–1155

    Article  PubMed  Google Scholar 

  • Zhu S, Malhotra A, Zhang L, Deng S, Zhang T, Freedman NJ, Storms R, Peppel K, Goldschmidt-Clermont PJ, Dong C (2010) Human umbilical cord blood endothelial progenitor cells decrease vein graft neointimal hyperplasia in SCID mice. Atherosclerosis 212:63

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Van Phuc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phuc, P.V., Ngoc, V.B., Lam, D.H. et al. Isolation of three important types of stem cells from the same samples of banked umbilical cord blood. Cell Tissue Bank 13, 341–351 (2012). https://doi.org/10.1007/s10561-011-9262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-011-9262-4

Keywords

Navigation