Skip to main content
Log in

Cyber-Physical Systems

  • CYBERNETICS
  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

A retrospective analysis of cyber-physical systems theory is given, and its current state is characterized. A number of problems arising in the theory of hybrid automata is investigated. A semigroup transition system is considered, which underlies the extension of the algebraic theory of interaction of labeled transition systems to cyber-physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Lee, “Cyber physical systems: Design challenges,” in: Proc. 11th IEEE Int. Symp. on Object Oriented Real-Time Distributed Computing (ISORC) (May 6, 2008, Orlando, FL., USA) (2008), pp. 363–369.

  2. Leadership Under Change: Information Technology R&D in a Competitive World. 2007. URL: http://www.nitrd.gov/Pcast/reports/PCAST-NIT-FINAL.pdf.

  3. J. Shi, J. Wan, H. Yan, and H. Suo, “A survey of cyber-physical systems,” in: Proc. Int. Conf. on Wireless Communications and Signal Processing (Nanjing, China, Nov. 9–11, 2011). (2011). URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.397.4496&rep=rep1&type=pdf.

  4. Cyber-Physical Systems: Situation Analysis of Current Trends. Technologies and Challenges. 2012. URL: http://events.energetics.com/NIST-CPSWorkshop/pdfs/CPS_Situation_Analysis.pdf.

  5. V. Gunes, S. Peter, T. Givargis, and F. Vahid, “A survey on concepts, applications, and challenges in cyber-physical systems,” KSII Transactions on Internet and Information Systems, Vol. 8, No. 12, 4242–4268 (2014).

    Google Scholar 

  6. Foundations for Innovation in Cyber-Physical Systems. Workshop Summary Report. 2013. URL: www.nist.gov/sites/default/files/documents/el/CPS-WorkshopReport-1-30-13-Final.pdf.

  7. Foundations for Innovation. Strategic R&D Opportunities for 21st Century Cyber-Physical Systems. 2016. URL: http://bookprem.com/gd-ebooks/B00U37SUBG.

  8. Cyber-Physical European Roadmap&Strategy (2015). URL: www.cyphers.eu.

  9. sCorPiuS-project.eu: European Roadmap for Cyber-Physical Systems in Manufacturing Deliverable D1.1. State of the Art on Cyber-Physical systems (2015). URL: http://www.scorpius.drupal.Pulsartecnalia.com/files/documents/sCorPiuS_D1.1_SotA_v1.2.pdf.

  10. N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine, Wiley, New York (1948).

    Google Scholar 

  11. S. N. Vasilyev and A. I. Malikov, “Some results on the stability of switched hybrid systems,” in: Topical Problems of Continuum Mechanics, Vol. 1, 23–81 (2011).

  12. A. I. Kukhtenko, “Main problems of control theory of complex systems,” Complex Control Systems, Iss. 1, 3–40 (1968).

  13. A. I. Kukhtenko, “On axiomatic construction of mathematical theory of systems,” Cybernetics and Computer Engineering: Complex Control Systems, Iss. 31, 3–25 (1976).

  14. A. I. Kukhtenko, “Main stages in the formation of the theory of invariance. Underlying works. 1,” Automatics, No. 2, 3–13 (1984); “Extension of themes of investigations. 2,” Automatics, No. 2, 3–14 (1985); “Nonlinear invariant systems. 3,” Automatics, No. 6, 3–14 (1985).

  15. A. I. Kukhtenko, Cybernetics and Fundamental Sciences [in Russian], Naukova Dumka, Kyiv (1987).

    Google Scholar 

  16. V. M. Kuntsevich, Pulse Self-Adjusting and Extremal Automatic Control Systems [in Russian], Tekhnika, Kyiv (1966).

    Google Scholar 

  17. A. G. Ivakhnenko, Inductive Method of Self-Organization of Models of Complex Systems [in Russian], Naukova Dumka, Kyiv (1982).

    Google Scholar 

  18. A. G. Ivakhnenko and J. A. Mueller, Self-Organization of Predictive Models [in Russian], Tekhnika, Kyiv (1985).

    Google Scholar 

  19. A. G. Ivakhnenko and V. S. Stepashko, Noise Stability of Modeling [in Russian], Naukova Dumka, Kyiv (1985).

    MATH  Google Scholar 

  20. N. P. Buslenko, Complex Systems Modeling [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  21. V. M. Glushkov (ed.), Software for Modeling Continuous and Discrete Systems [in Russian], Nauka, Moscow (1975).

  22. O. Maler, Z. Manna, and A. Pnueli, “From timed to hybrid systems. Real-time: Theory in Practice,” LNCS, Vol. 600, 447–484 (1991).

    Google Scholar 

  23. T. A. Henzinger, “The theory of hybrid automata.” in: Proc. 11th Ann. IEEE Symp. on Logic in Computer Science (LICS 96) (1996), pp. 278–292.

  24. N. Lynch, R. Segala, and F. Vaandrager, “Hybrid I/O automata,” Information and Computation, Vol. 185, Iss. 1, 105–157 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  25. J. F. Raskin, “An introduction to hybrid automata,” in: Handbook of Networked and Embedded Control Systems, Springer, NY (2005), pp. 491–518.

  26. R. Grossman (ed.), Symbolic Computation: Applications to Scientific Computing, SIAM, Philadelphia (1989).

  27. A. Miola and M. Temperini (eds.), Advances in the Design of Symbolic Computation Systems, Springer, Wien (1997).

  28. M. Abadi, L. Lamport, and P. Wolper, “Realizable and unrealizable specifications of reactive systems,” LNCS, Vol. 372, 1–17 (1989).

    MathSciNet  Google Scholar 

  29. L. Aceto, A. Ingolfsdottir, K. G. Larsen, and J. Srba, Reactive Systems: Modelling, Specification, and Verification, Cambridge University Press, Cambridge (2007).

    Book  MATH  Google Scholar 

  30. E. Yu. Pariyskaya, “The comparative analysis of mathematical models and approaches to the simulation and analysis of continuous-discrete systems,” Differential Equations and Control Processes, Electronic Magazine, No. 1 (1997). URL: http://www.math.spbu.ru/diffjournal/RU/numbers/1997.1/issue.html.

  31. T. Henzinger and P. T. Ho, “HyTech: The Cornell hybrid technology tool. Hybrid systems. II,” LNCS, Vol. 999, 265–293 (1995).

    Google Scholar 

  32. N. Saeedloei and G. Gupta, “A logic-based modeling and verification of CPS,” ACM SIGBED Review, Vol. 8, Iss. 2, 31–34 (2011).

    Article  Google Scholar 

  33. S. Coleri, M. Ergen, and T. K. J. Koo, “Lifetime analysis of a sensor network with hybrid automata modelling,” in: Proc. 1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA’02) (Sept. 28, 2002, Atlanta, Ga., USA) (2002), pp. 98–104.

  34. P. Ye, E. Entcheva, R. Grosu, and S. A. Smolka, “Efficient modeling of excitable cells using hybrid automata,” IET Systems Biology, Vol. 2, Iss. 1, 24–32 (2008).

    Article  Google Scholar 

  35. H. Abbas, K. J. Jang, and R. Mangharam, Benchmark: Nonlinear Hybrid Automata Model of Excitable Cardiac Tissue. URL: http://repository.upenn.edu/mlab_papers/90.

  36. A. Cimatti, S. Mover, and M. Sessa, “From electrical switched networks to hybrid automata (Extended version),” LNCS, Vol. 9995, 164–181 (2016).

    Google Scholar 

  37. J. Niggemann and V. Lohweg, “On the diagnosis of cyber-physical production systems: State-of-the-art and research,” in: Agenda Proc. 29th AAAI Conference on Artificial Intelligence (AAAI’15) (Austin, Tex., Jan. 25–30, 2015) (2015), pp. 4119–4126.

  38. B. Balaji, M. A. Al Faruque, N. Dutt, R. Gupta, and Y. Agarwal, “Models, abstractions, and architectures: The missing links in cyber-physical systems,” in: Proc. 52nd Annual Design Automation Conference (DAC’15) (San Francisco, Ca., June 07–11, 2015), ACM, NY (2015). http:dx.doi.org/https://doi.org/10.1145/2744769.2747936.

  39. P. H. Nguen, S. Ali, and T. Yue, “Model-based security engineering for cyber-physical systems,” Journal of Information and Software Technology, Vol. 83, Iss. C, 116–135 (2017).

  40. E. A. Lee and S. A. Seshia, Introduction to Embedded Systems: A Cyber-Physical Systems Approach, 2nd Edition, MIT Press, Cambridge, Mass. (2017).

    MATH  Google Scholar 

  41. S.Wolfram, Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley, Boston, Mass. (1988).

    MATH  Google Scholar 

  42. R. Alur, C. Courcoubetis, and D. L. Dill, “Model-checking for real-time systems,” in: Proc. 5th IEEE Symposium “Logic in Computer Science” (Philadelphia, Pa.) (1990), pp. 414–425.

  43. A. Olivero and S. Yovine, Kronos: A Tool for Verifying Real-Time Systems. User’s Guide and Reference Manual, VERIMAG, Grenoble (1992).

    Google Scholar 

  44. G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language User Guide, Addison-Wesley, Boston, Mass. (1998).

    Google Scholar 

  45. M. Tiller (ed.), Introduction to Physical Modeling with Modelica, The Kluwer International Series in Engineering and Computer Science, Vol. 615, Kluwer, Boston–Dordrecht–London (2001).

  46. L. P. Carloni, R. Passerone, A. Pinto, and A. L. Sangiovanni-Vincentelli, “Languages and tools for hybrid systems design,” Foundations and Trends in Electronic Design Automation, Vol. 1, Iss. 1/2, 1–193 (2005).

    Article  MATH  Google Scholar 

  47. J. Lygeros, Lecture Notes on Hybrid Systems, University of Cambridge, Cambridge (2003). URL: https://fenix.tecnico.ulisboa.pt/downloadFile/3779579688470/lygeros.pdf.

  48. H. S. L. Lee, M. Althoff, S. Hoelldampf, M. Olbrich, and E. Barke, “Automated generation of hybrid system models for reachability analysis of nonlinear analog circuits,” in: Proc. 20th Asia and South Pacific Design Automation Conference (ASP-DAC-2015), IEEE, Chiba/Tokyo (2015), pp. 725–730.

  49. V. V. Skobelev, “Analysis of the structure of attributed transition systems without hidden transitions,” Cybernetics and Systems Analysis, Vol. 53, No. 2, 165–175 (2017).

    Article  MathSciNet  Google Scholar 

  50. A. A. Letichevsky, “Algebraic theory of interaction and cyber-physical systems,” Problems of Conrtol and Informatics, No. 5, 37–55 (2017).

  51. A. Letichevsky, “Algebra of behavior transformations and its applications,” in: V. B. Kudryavtsev and I. G. Rosenberg (eds.), Structural Theory of Automata, Semigroups, and Universal Algebra, NATO Science Series II, Mathematics, Physics and Chemistry, Vol. 207, Springer, Dordrecht (2005), pp. 241–272.

    Chapter  Google Scholar 

  52. A. A. Letichevsky, “Insertion modeling,” USiM, No. 6, 1–21 (2012).

  53. A. A. Letichevsky, O. A. Letychevskyi, V. S. Peschanenko, and T. Weigert, “Insertion modeling and symbolic verification of large systems,” LNCS, Vol. 9369, 3–18 (2015).

    Google Scholar 

  54. A. A. Letichevsky, O. O. Letychevskyi, V. S. Peschanenko, and A. A. Huba, “Generating symbolic traces in the insertion modeling system,” Cybernetics and Systems Analysis, Vol. 51, No. 1, 7–19 (2015).

    Article  MATH  Google Scholar 

  55. Recommendation Z.151, User Requirements Notation (URN), J.: International Telecommunication Union (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Letichevsky.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 6, November–December, 2017, pp. 3–19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letichevsky, A.A., Letychevskyi, O.O., Skobelev, V.G. et al. Cyber-Physical Systems. Cybern Syst Anal 53, 821–834 (2017). https://doi.org/10.1007/s10559-017-9984-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-017-9984-9

Keywords

Navigation