Skip to main content
Log in

Multistep Method of the Numerical Solution of the Problem of Modeling the Circulation of Atmosphere in the Cauchy Problem

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

An explicit multistep one-stage method is considered, which allows numerical integration of the differential equations that constitute the basis of the atmosphere circulation model by transforming the initial–boundary-value convection–diffusion problem to the Cauchy problem. The method has an advantage over the available methods due to its high precision and low computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. A. Prusov and A. Yu. Doroshenko, Modeling of Natural and Technogenic Processes in the Atmosphere [in Russian], Naukova Dumka, Kyiv (2006).

  2. S. K. Godunov and V. S. Ryaben’kii, Difference Schemes (An Introduction to the Theory) [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  3. P. J. Roache, Fundamentals of Computational Fluid Dynamics, Hermosa Pub., Albuquerque (1998).

    Google Scholar 

  4. A. A. Samarskii and E. S. Nikolaev, Methods to Solve Finite-Difference Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  5. V. P. Sadokov (ed.), Numerical Methods used in Atmospheric Models [in Russian], Gidrometeoizdat, Leningrad (1982).

    Google Scholar 

  6. P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, J. Wiley & Sons, New York–London (1962).

    MATH  Google Scholar 

  7. H. J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations, Springer, Berlin–Heidelberg–New York (1973).

    Book  MATH  Google Scholar 

  8. A. Yu. Doroshenko and V. A. Prusov, “Methods of efficient modeling and forecasting regional atmospheric processes,” in: I. Faragó, Á. Havasi, and K. Georgiev (eds.), Advances in Air Pollution Modeling for Environmental Security, NATO Science Series, 54, Springer-Verlag (2005), pp. 143–152.

  9. V. A. Prusov, A. E. Doroshenko, and R. I. Chernysh, “A method for numerical solution of a multidimentional convection–diffusion problem,” Cybern. Syst. Analysis, 45, No. 1, 89–95 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  10. V. A. Prusov, A. E. Doroshenko, and R. I. Chernysh, “Choosing the parameter of a modified additive-averaged splitting algorithm,” Cybern. Syst. Analysis, 45, No. 4, 589–596 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  11. V. A. Prusov, A. E. Doroshenko, R. I. Chernysh, and L. N. Guk, “Efficient difference scheme for numerical solution of a convective diffusion problem,” Cybern. Syst. Analysis, 43, No. 3, 368–376 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Prusov, A. Doroshenko, I. Faragó, and Á. Havasi, “On the numerical solution of the three-dimensional advection-diffusion equation,” Probl. Programmir., No. 2–3, 641–647 (2006).

  13. V. A. Prusov and A. Yu. Doroshenko, “On efficient numerical solution of one-dimensional convection–diffusion equations in modeling atmospheric processes,” Intern. J. of Environment and Pollution, 32, No. 2, 231–249 (2008).

  14. D. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Hemisphere, New York (1984).

    MATH  Google Scholar 

  15. E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential–Algebraic Problems, Springer Series in Comput. Mathematics, Vol. 14, Springer-Verlag (1991).

  16. L. M. Skvortsov, “Explicit multistep method for the numerical solution of stiff differential equations,” Comput. Math. Math. Physics, 47, No. 6, 915–923 (2007).

    Article  MathSciNet  Google Scholar 

  17. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods to Solve Convection–Diffusion Problems [in Russian], Editorial URSS (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Prusov.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 4, July–August, 2015, pp. 62–70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prusov, V.A., Doroshenko, A.Y. Multistep Method of the Numerical Solution of the Problem of Modeling the Circulation of Atmosphere in the Cauchy Problem. Cybern Syst Anal 51, 547–555 (2015). https://doi.org/10.1007/s10559-015-9745-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-015-9745-6

Keywords

Navigation