Skip to main content
Log in

Explicit Formulas for Interpolating Splines of Degree 5 on the Triangle

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

Explicit formulas are derived for 21 Zlamal–Zenisek basis interpolating polynomials of degree 5 in each triangle of the triangulation. Their use significantly reduces the number of arithmetic operations in the FEM because otherwise 21 systems with 21 unknowns should be solved in each triangle to find all the 21 coefficients of each of the basis interpolating polynomials of degree 5. The formulas are also presented for interpolation operators with the use of these basis polynomials and for the integral representation of the remainder term of the approximation of differentiable functions by these operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Sergienko and V. S. Deineka, Systems Analysis [in Russian], Naukova Dumka, Kyiv (2013).

    Google Scholar 

  2. I. V. Sergienko, V. K. Zadiraka, and O. M. Lytvyn, Elements of the General Theory of Optimal Algorithms and Related Issues [in Ukrainian], Naukova Dumka, Kyiv (2012).

    Google Scholar 

  3. Yu. M. Matsevityi, Inverse Heat Conduction Problems [in Russian], Vol. 2: Applications, Naukova Dumka, Kyiv (2003).

  4. M. Zlamal, “On the finite element method,” Numer. Math., 12, 394–409 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Zlamal, “On some finite element procedures for solving second order boundary value problems,” Numer. Math., 14, 42–48 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Zlamal, “A finite element procedure of the second order accuracy,” Numer. Math., 12, 394–402 (1970).

    Article  Google Scholar 

  7. A. Zenisek, “Interpolation polynomials on the triangle,” Numer. Math., 15, 283–296 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Zlamal and A. Zenisek, “Mathematical aspect of the finite element method,” in: V. Kolar et al. (eds.), Technical, Physical and Mathematical Principles of the Finite Element Method, Acad. VED, Praha, (1971), pp. 15–39.

    Google Scholar 

  9. R. Varga, Functional Analysis and Approximation Theory in the Numerical Analysis [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  10. I. Babushka and A. K. Aziz, “On the engle condition in the finite element method,” SIAM J. Numer. Anal., 13, No. 2, 214–226 (1976).

    Article  MathSciNet  Google Scholar 

  11. J. H. Bramble and M. Zlamal, “Triangular elements in the finite element method,” Math. Comput., 24, 809–820 (1970).

    Article  MathSciNet  Google Scholar 

  12. P. G. Ciarlet and P. A. Raviart, “General Lagrange and Hermite interpolation in Lp with application in finite element methods,” Arch. Rat. Mech. and Anal., 46, No. 3, 177–179 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  13. Yu. N. Subbotin, “Multidimentional piecewise-polynomial interpolation,” in: Yu. A. Kuznetsov (ed.), Approximation and Interpolation Methods [in Russian], VTsN, Novosibirsk (1981), pp. 148–153.

    Google Scholar 

  14. Yu. N. Subbotin, “Dependence of the estimates of multidimentional piecewise polynomial approximation on geometrical characteristics of triangulation,” in: Tr. MIAN SSSR, 189, 117–137 (1989).

    MathSciNet  Google Scholar 

  15. Yu. N. Subbotin, “Dependence of the estimates of approximation by interpolating polynomials of degree five on geometrical characteristics of triangle,” in: Tr. Inst. Matematiki i Mekhaniki UrO RAN, 2, 110–119 (1992).

    MathSciNet  MATH  Google Scholar 

  16. Yu. N. Subbotin, “Analysis of the properties of monotonicity and convexity in local approximation,” Zh. Vych. Mat. Mat. Fiz., 33, No. 7, 996–1003 (1993).

    MathSciNet  MATH  Google Scholar 

  17. Yu. N. Subbotin, “A new cubic element in the FEM,” in: Tr. Inst. Matematiki i Mekhaniki UrO RAN, Ekaterinburg, Theory of Functins, 11, No. 2, 120–130 (2005).

    Google Scholar 

  18. N. V. Baidakova, “On some interpolation process by polynomials of degree 4 1 m+ on the triangle,” Russ. J. Numer. Anal. Math. Modelling, 14, No. 2, 87–107 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  19. N. V. Latypova, “Error estimates for approximation by polynomials of degree 4 1 m+ on the triangle,” Proc. of the Steklov Institute of Mathematics, Suppl. 1, 190–213 (2002).

  20. N. V. Latypov, “Error of piecewise-cubic interpolation on a triangle,” Vest. Udmurt. Univ., Ser. Matem., (2003), pp. 3–10.

  21. A. Zenisek, “Maximum-angle condition and triangular finite elements of Hermite type,” Math. Comput., 64, No. 211, 929–941 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  22. N. V. Baidakova, “A method of Hermitian interpolation by polynomials of the third degree on a triangle,” in: Tr. Inst. Matematiki i Mekhaniki UrO RAN, Ekaterinburg, Theory of Functions, 11, No. 2, 47–52 (2005).

    MathSciNet  Google Scholar 

  23. A. Zenisek and J. Hoderova–Zlamalova, “Semiregular hermite tetrahedral finite elements,” Appl. of Math., No. 4, 295–315 (2001).

  24. Yu. V. Kupriyanova, “On the estimate of directional derivative of the Hermitian spline on a triangle,” Matematika, Mekhanika, Issue 8, 59–61 (2006).

  25. Yu. V. Kupriyanova, “Estimate of the derivative of the Hermitian spline on three-dimensional simplex,” in: Abstr. of Papers Read at the 13th Saratov Winter School on Modern Problems of the Function Theory and their Application, Nauchnaya Kniga, Saratov (2006).

  26. Yu. V. Kupriyanova, “Approximation of directional derivatives of interpolating polynomial on a triangle,” in: Proc. Conf. Modern Methods of the Function Theory and Related Problems, Voronezh (2007), pp. 120–121.

  27. Yu. V. Kupriyanova, “On a theorem in spline theory,” Comp. Math. Math. Phys., 48, No. 2, 195–200 (2008).

    Article  MathSciNet  Google Scholar 

  28. Yu. V. Matveeva, “Interpolation by cubic polynomials of the third degree on a triangle with the use of mixed derivatives,” Izv. Saratov. Univ., Ser. Matematika, Mekhanika, Informatika, 7, Issue 1, 28–32 (2007).

    MathSciNet  Google Scholar 

  29. Yu. V. Matveeva, “Approximation of functions by polynomials on a triangular mesh,” Author’s Abstr. of PhD Theses, Saratov (2008).

    Google Scholar 

  30. S. M. Nikol’skii, A Course in Mathematical Analysis [in Russian], Fizmatlit, Moscow (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sergienko.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 5, September–October, 2014, pp. 25–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergienko, I.V., Lytvyn, O.M., Lytvyn, O.O. et al. Explicit Formulas for Interpolating Splines of Degree 5 on the Triangle. Cybern Syst Anal 50, 670–678 (2014). https://doi.org/10.1007/s10559-014-9657-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-014-9657-x

Keywords

Navigation