Skip to main content

Advertisement

Log in

Parathyroid Hormone, A Crucial Mediator of Pathologic Cardiac Remodeling in Aldosteronism

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Aldosteronism, or chronic elevation in plasma aldosterone (ALDO) (inappropriate for dietary Na+ intake), is accompanied by an adverse structural remodeling of the heart and vasculature. Herein, we bring forward a new perspective in which parathyroid hormone (PTH) is identified as a crucial mediator of pathologic cardiac remodeling in aldosteronism. Secondary hyperparathyroidism (SHPT) appears because of the marked urinary and fecal losses of Ca2+ and Mg2+ that accompany aldosteronism which creates ionized hypocalcemia and hypomagnesemia, providing major stimuli to the parathyroids' enhanced secretion of PTH. Invoked to restore extracellular Ca2+ and Mg2+ homeostasis, elevations in plasma PTH lead to paradoxical intracellular Ca2+ overloading of diverse tissues. In the case of cardiomyocytes, the excessive intracellular Ca2+ accumulation involves both cytosolic free and mitochondrial domains with a consequent induction of oxidative stress by these organelles and lost ATP synthesis. The ensuing opening of their inner membrane permeability transition pore (mPTP) accounts for the osmotic swelling and structural degeneration of mitochondria followed by programed cell necrosis. Tissue repair, invoked to preserve the structural integrity of myocardium accounts for a replacement fibrosis, or scarring, which is found scattered throughout the right and left heart; it represents a morphologic footprint of earlier necrosis. Multiple lines of evidence are reviewed that substantiate the PTH-mediated paradigm and the mitochondriocentric signal-transducer-effector pathway to cardiomyocyte necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dluhy RG, Williams GH. Aldosterone–villain or bystander? N Engl J Med. 2004;351:8–10.

    Article  PubMed  CAS  Google Scholar 

  2. Funder JW, Reincke M. Aldosterone: a cardiovascular risk factor? Biochim Biophys Acta. 2010;1802:1188–92.

    Article  PubMed  CAS  Google Scholar 

  3. FritschNeves M, Schiffrin EL. Aldosterone: a risk factor for vascular disease. Curr Hypertens Rep. 2003;5:59–65.

    Article  Google Scholar 

  4. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.

    Article  PubMed  CAS  Google Scholar 

  5. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.

    Article  PubMed  CAS  Google Scholar 

  6. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21.

    Article  PubMed  CAS  Google Scholar 

  7. Weber KT. From inflammation to fibrosis: a stiff stretch of highway. Hypertension. 2004;43:716–9.

    Article  PubMed  CAS  Google Scholar 

  8. Resnick LM, Müller FB, Laragh JH. Calcium-regulating hormones in essential hypertension. Relation to plasma renin activity and sodium metabolism. Ann Intern Med. 1986;105:649–54.

    PubMed  CAS  Google Scholar 

  9. Resnick LM, Nicholson JP, Laragh JH. Calcium, the renin-aldosterone system, and the hypotensive response to nifedipine. Hypertension. 1987;10:254–8.

    Article  PubMed  CAS  Google Scholar 

  10. Shane E, Mancini D, Aaronson K, Silverberg SJ, Seibel MJ, Addesso V, et al. Bone mass, vitamin D deficiency, and hyperparathyroidism in congestive heart failure. Am J Med. 1997;103:197–207.

    Article  PubMed  CAS  Google Scholar 

  11. Alsafwah S, LaGuardia SP, Nelson MD, Battin DL, Newman KP, Carbone LD, et al. Hypovitaminosis D in African Americans residing in Memphis, Tennessee with and without heart failure. Am J Med Sci. 2008;335:292–7.

    Article  PubMed  Google Scholar 

  12. LaGuardia SP, Dockery BK, Bhattacharya SK, Nelson MD, Carbone LD, Weber KT. Secondary hyperparathyroidism and hypovitaminosis D in African-Americans with decompensated heart failure. Am J Med Sci. 2006;332:112–8.

    Article  PubMed  Google Scholar 

  13. Rossi E, Sani C, Perazzoli F, Casoli MC, Negro A, Dotti C. Alterations of calcium metabolism and of parathyroid function in primary aldosteronism, and their reversal by spironolactone or by surgical removal of aldosterone-producing adenomas. Am J Hypertens. 1995;8:884–93.

    Article  PubMed  CAS  Google Scholar 

  14. Resnick LM, Laragh JH. Calcium metabolism and parathyroid function in primary aldosteronism. Am J Med. 1985;78:385–90.

    Article  PubMed  CAS  Google Scholar 

  15. Massry SG, Smogorzewski M. Mechanisms through which parathyroid hormone mediates its deleterious effects on organ function in uremia. Semin Nephrol. 1994;14:219–31.

    PubMed  CAS  Google Scholar 

  16. Epstein M. Aldosterone blockade: an emerging strategy for abrogating progressive renal disease. Am J Med. 2006;119:912–9.

    Article  PubMed  CAS  Google Scholar 

  17. Rosenberg J, Pines M, Hurwitz S. Response of adrenal cells to parathyroid hormone stimulation. J Endocrinol. 1987;112:431–7.

    Article  PubMed  CAS  Google Scholar 

  18. Rosenberg J, Pines M, Hurwitz S. Stimulation of chick adrenal steroidogenesis by avian parathyroid hormone. J Endocrinol. 1988;116:91–5.

    Article  PubMed  CAS  Google Scholar 

  19. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A. 2003;100:14211–6.

    Article  PubMed  CAS  Google Scholar 

  20. Wang H, Shimosawa T, Matsui H, Kaneko T, Ogura S, Uetake Y, et al. Paradoxical mineralocorticoid receptor activation and left ventricular diastolic dysfunction under high oxidative stress conditions. J Hypertens. 2008;26:1453–62.

    Article  PubMed  CAS  Google Scholar 

  21. Goodfriend TL, Ball DL, Egan BM, Campbell WB, Nithipatikom K. Epoxy-keto derivative of linoleic acid stimulates aldosterone secretion. Hypertension. 2004;43:358–63.

    Article  PubMed  CAS  Google Scholar 

  22. Payet MD, Goodfriend TL, Bilodeau L, Mackendale C, Chouinard L, Gallo-Payet N. An oxidized metabolite of linoleic acid increases intracellular calcium in rat adrenal glomerulosa cells. Am J Physiol Endocrinol Metab. 2006;291:E1160–7.

    Article  PubMed  CAS  Google Scholar 

  23. Brilla CG, Matsubara LS, Weber KT. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol. 1993;25:563–75.

    Article  PubMed  CAS  Google Scholar 

  24. Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT. Aldosterone-induced inflammation in the rat heart. Role of oxidative stress. Am J Pathol. 2002;161:1773–81.

    Article  PubMed  CAS  Google Scholar 

  25. Chhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z, et al. Hyperparathyroidism and the calcium paradox of aldosteronism. Circulation. 2005;111:871–8.

    Article  PubMed  CAS  Google Scholar 

  26. Takeda Y. Effects of eplerenone, a selective mineralocorticoid receptor antagonist, on clinical and experimental salt-sensitive hypertension. Hypertens Res. 2009;32:321–4.

    Article  PubMed  CAS  Google Scholar 

  27. Manning Jr RD, Tian N, Meng S. Oxidative stress and antioxidant treatment in hypertension and the associated renal damage. Am J Nephrol. 2005;25:311–7.

    Article  PubMed  CAS  Google Scholar 

  28. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT. Remodeling of the rat right and left ventricle in experimental hypertension. Circ Res. 1990;67:1355–64.

    Article  PubMed  CAS  Google Scholar 

  29. Laurent GJ. Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol. 1987;252:C1–9.

    PubMed  CAS  Google Scholar 

  30. López B, González A, Díez J. Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation. 2010;121:1645–54.

    Article  PubMed  Google Scholar 

  31. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation. 2002;105:1387–93.

    Article  PubMed  Google Scholar 

  32. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation. 2002;105:1503–8.

    Article  PubMed  Google Scholar 

  33. Díez J. Towards a new paradigm about hypertensive heart disease. Med Clin North Am. 2009;93:637–45.

    Article  PubMed  Google Scholar 

  34. Pearlman ES, Weber KT, Janicki JS, Pietra G, Fishman AP. Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab Invest. 1982;46:158–64.

    PubMed  CAS  Google Scholar 

  35. Huysman JAN, Vliegen HW, Van der Laarse A, Eulderink F. Changes in nonmyocyte tissue composition associated with pressure overload of hypertrophic human hearts. Pathol Res Pract. 1989;184:577–81.

    Article  PubMed  CAS  Google Scholar 

  36. Sun Y, Ramires FJA, Weber KT. Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovasc Res. 1997;35:138–47.

    Article  PubMed  CAS  Google Scholar 

  37. Weber KT. Aldosterone in congestive heart failure. N Engl J Med. 2001;345:1689–97.

    Article  PubMed  CAS  Google Scholar 

  38. Young M, Fullerton M, Dilley R, Funder J. Mineralocorticoids, hypertension, and cardiac fibrosis. J Clin Invest. 1994;93:2578–83.

    Article  PubMed  CAS  Google Scholar 

  39. Garnier A, Bendall JK, Fuchs S, Escoubet B, Rochais F, Hoerter J, et al. Cardiac specific increase in aldosterone production induces coronary dysfunction in aldosterone synthase-transgenic mice. Circulation. 2004;110:1819–25.

    Article  PubMed  CAS  Google Scholar 

  40. Sheppard K, Funder JW. Mineralocorticoid specificity of renal type I receptors: in vivo binding studies. Am J Physiol. 1987;252:E224–9.

    PubMed  CAS  Google Scholar 

  41. Suki WN, Schwettmann RS, Rector Jr FC, Seldin DW. Effect of chronic mineralocorticoid administration on calcium excretion in the rat. Am J Physiol. 1968;215:71–4.

    PubMed  CAS  Google Scholar 

  42. Massry SG, Coburn JW, Chapman LW, Kleeman CR. The effect of long-term desoxycorticosterone acetate administration on the renal excretion of calcium and magnesium. J Lab Clin Med. 1968;71:212–9.

    CAS  Google Scholar 

  43. Gehr MK, Goldberg M. Hypercalciuria of mineralocorticoid escape: clearance and micropuncture studies in the rat. Am J Physiol. 1986;251:F879–88.

    PubMed  CAS  Google Scholar 

  44. Cappuccio FP, Markandu ND, MacGregor GA. Renal handling of calcium and phosphate during mineralocorticoid administration in normal subjects. Nephron. 1988;48:280–3.

    Article  PubMed  CAS  Google Scholar 

  45. Rastegar A, Agus Z, Connor TB, Goldberg M. Renal handling of calcium and phosphate during mineralocorticoid “escape” in man. Kidney Int. 1972;2:279–86.

    Article  PubMed  CAS  Google Scholar 

  46. Zikos D, Langman C, Gafter U, Delahaye B, Lau K. Chronic DOCA treatment increases Ca absorption: role of hypercalciuria and vitamin D. Am J Physiol. 1986;251:E279–84.

    PubMed  CAS  Google Scholar 

  47. Rossi E, Perazzoli F, Negro A, Sani C, Davoli S, Dotti C, et al. Acute effects of intravenous sodium chloride load on calcium metabolism and on parathyroid function in patients with primary aldosteronism compared with subjects with essential hypertension. Am J Hypertens. 1998;11:8–13.

    Article  PubMed  CAS  Google Scholar 

  48. Berthelot A, Pernot F, Gairard A. Influence of the thyroid and parathyroid glands on magnesium metabolism during mineralocorticoid treatment (DOCA+NaCl) in the rat. Ann Nutr Metab. 1983;27:349–54.

    Article  PubMed  CAS  Google Scholar 

  49. Horton R, Biglieri EG. Effect of aldosterone on the metabolism of magnesium. J Clin Endocrinol Metab. 1962;22:1187–92.

    Article  PubMed  CAS  Google Scholar 

  50. Zou AP, Cowley Jr AW. Role of nitric oxide in the control of renal function and salt sensitivity. Curr Hypertens Rep. 1999;1:178–86.

    Article  PubMed  CAS  Google Scholar 

  51. Granger JP, Kassab S, Novak J, Reckelhoff JF, Tucker B, Miller MT. Role of nitric oxide in modulating renal function and arterial pressure during chronic aldosterone excess. Am J Physiol. 1999;276:R197–202.

    PubMed  CAS  Google Scholar 

  52. Rondón LJ, Groenestege WM, Rayssiguier Y, Mazur A. Relationship between low magnesium status and TRPM6 expression in the kidney and large intestine. Am J Physiol Regul Integr Comp Physiol. 2008;294:R2001–7.

    Article  PubMed  CAS  Google Scholar 

  53. Morrissey JJ, Cohn DV. The effects of calcium and magnesium on the secretion of parathormone and parathyroid secretory protein by isolated porcine parathyroid cells. Endocrinology. 1978;103:2081–90.

    Article  PubMed  CAS  Google Scholar 

  54. Mayer GP, Hurst JG. Comparison of the effects of calcium and magnesium on parathyroid hormone secretion rate in calves. Endocrinology. 1978;102:1803–14.

    Article  PubMed  CAS  Google Scholar 

  55. DiPette DJ, Greilich PE, Nickols GA, Graham GA, Green A, Cooper CW, et al. Effect of dietary calcium supplementation on blood pressure and calciotropic hormones in mineralocorticoid-salt hypertension. J Hypertens. 1990;8:515–20.

    Article  PubMed  CAS  Google Scholar 

  56. Fertig A, Webley M, Lynn JA. Primary hyperparathyroidism in a patient with Conn’s syndrome. Postgrad Med J. 1980;56:45–7.

    Article  PubMed  CAS  Google Scholar 

  57. Hellman DE, Kartchner M, Komar N, Mayes D, Pitt M. Hyperaldosteronism, hyperparathyroidism, medullary sponge kidneys, and hypertension. JAMA. 1980;244:1351–3.

    Article  PubMed  CAS  Google Scholar 

  58. Brunaud L, Germain A, Zarnegar R, Rancier M, Alrasheedi S, Caillard C, et al. Serum aldosterone is correlated positively to parathyroid hormone (PTH) levels in patients with primary hyperparathyroidism. Surgery. 2009;146:1035–41.

    Article  PubMed  Google Scholar 

  59. Chhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z, et al. Loss of bone minerals and strength in rats with aldosteronism. Am J Physiol Heart Circ Physiol. 2004;287:H2023–6.

    Article  PubMed  CAS  Google Scholar 

  60. Palmieri GM, Hawrylko J. Effects of aldosterone on the urinary excretion of total and non-dialyzable hydroxyproline. Horm Metab Res. 1977;9:507–9.

    Article  CAS  Google Scholar 

  61. Sellmeyer DE, Schloetter M, Sebastian A. Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J Clin Endocrinol Metab. 2002;87:2008–12.

    Article  PubMed  CAS  Google Scholar 

  62. Goulding A, Campbell D. Dietary NaCl loads promote calciuria and bone loss in adult oophorectomized rats consuming a low calcium diet. J Nutr. 1983;113:1409–14.

    PubMed  CAS  Google Scholar 

  63. Creedon A, Cashman KD. The effect of high salt and high protein intake on calcium metabolism, bone composition and bone resorption in the rat. Br J Nutr. 2000;84:49–56.

    PubMed  CAS  Google Scholar 

  64. Somers MJ, Mavromatis K, Galis ZS, Harrison DG. Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation. 2000;101:1722–8.

    Article  PubMed  CAS  Google Scholar 

  65. Pu Q, Neves MF, Virdis A, Touyz RM, Schiffrin EL. Endothelin antagonism on aldosterone-induced oxidative stress and vascular remodeling. Hypertension. 2003;42:49–55.

    Article  PubMed  CAS  Google Scholar 

  66. Virdis A, Neves MF, Amiri F, Viel E, Touyz RM, Schiffrin EL. Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension. 2002;40:504–10.

    Article  PubMed  CAS  Google Scholar 

  67. Gandhi MS, Deshmukh PA, Kamalov G, Zhao T, Zhao W, Whaley JT, et al. Causes and consequences of zinc dyshomeostasis in rats with chronic aldosteronism. J Cardiovasc Pharmacol. 2008;52:245–52.

    Article  PubMed  CAS  Google Scholar 

  68. Fleckenstein A, Frey M, Fleckenstein-Grun G. Consequences of uncontrolled calcium entry and its prevention with calcium antagonists. Eur Heart J. 1983;4:43–50.

    Article  PubMed  CAS  Google Scholar 

  69. Ahokas RA, Sun Y, Bhattacharya SK, Gerling IC, Weber KT. Aldosteronism and a proinflammatory vascular phenotype. Role of Mg2+, Ca2+ and H2O2 in peripheral blood mononuclear cells. Circulation. 2005;111:51–7.

    Article  PubMed  CAS  Google Scholar 

  70. Ahokas RA, Warrington KJ, Gerling IC, Sun Y, Wodi LA, Herring PA, et al. Aldosteronism and peripheral blood mononuclear cell activation. A neuroendocrine-immune interface. Circ Res. 2003;93:e124–35.

    Article  PubMed  CAS  Google Scholar 

  71. Fujita T, Palmieri GM. Calcium paradox disease: calcium deficiency prompting secondary hyperparathyroidism and cellular calcium overload. J Bone Miner Metab. 2000;18:109–25.

    Article  PubMed  CAS  Google Scholar 

  72. Smogorzewski M, Zayed M, Zhang YB, Roe J, Massry SG. Parathyroid hormone increases cytosolic calcium concentration in adult rat cardiac myocytes. Am J Physiol. 1993;264:H1998–2006.

    PubMed  CAS  Google Scholar 

  73. Perna AF, Smogorzewski M, Massry SG. Effects of verapamil on the abnormalities in fatty acid oxidation of myocardium. Kidney Int. 1989;36:453–7.

    Article  PubMed  CAS  Google Scholar 

  74. Rampe D, Lacerda AE, Dage RC, Brown AM. Parathyroid hormone: an endogenous modulator of cardiac calcium channels. Am J Physiol. 1991;261:H1945–50.

    PubMed  CAS  Google Scholar 

  75. Deluca HF, Engstrom GW, Rasmussen H. The action of vitamin D and parathyroid hormone in vitro on calcium uptake and release by kidney mitochondria. Proc Natl Acad Sci U S A. 1962;48:1604–9.

    Article  PubMed  CAS  Google Scholar 

  76. Sallis JD, Deluca HF, Rasmussen H. Parathyroid hormone-dependent uptake of inorganic phosphate by mitochondria. J Biol Chem. 1963;238:4098–102.

    PubMed  CAS  Google Scholar 

  77. Sallis JD, DeLuca HF. Action of parathyroid hormone on mitochondria. Magnesium- and phosphate-independent respiration. J Biol Chem. 1966;241:1122–7.

    PubMed  CAS  Google Scholar 

  78. Kimmich GA, Rasmussen H. The effect of parathyroid hormone on mitochondrial ion transport in the terminal portion of the cytochrome chain. Biochim Biophys Acta. 1966;113:457–66.

    Article  PubMed  CAS  Google Scholar 

  79. Rasmussen H, Ogata E. Parathyroid hormone and the reactions of mitochondria to cations. Biochemistry. 1966;5:733–45.

    Article  PubMed  CAS  Google Scholar 

  80. Touyz RM. Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid Redox Signal. 2005;7:1302–14.

    Article  PubMed  CAS  Google Scholar 

  81. Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, et al. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A. 2010;107:436–41.

    Article  PubMed  CAS  Google Scholar 

  82. Kuo TH, Zhu L, Golden K, Marsh JD, Bhattacharya SK, Liu BF. Altered Ca2+ homeostasis and impaired mitochondrial function in cardiomyopathy. Mol Cell Biochem. 2002;238:119–27.

    Article  PubMed  CAS  Google Scholar 

  83. Rossier MF, Lesouhaitier O, Perrier E, Bockhorn L, Chiappe A, Lalevée N. Aldosterone regulation of T-type calcium channels. J Steroid Biochem Mol Biol. 2003;85:383–8.

    Article  PubMed  CAS  Google Scholar 

  84. Perrier R, Richard S, Sainte-Marie Y, Rossier BC, Jaisser F, Hummler E, et al. A direct relationship between plasma aldosterone and cardiac L-type Ca2+ current in mice. J Physiol. 2005;569:153–62.

    Article  PubMed  CAS  Google Scholar 

  85. Schlüter KD, Weber M, Piper HM. Parathyroid hormone induces protein kinase C but not adenylate cyclase in adult cardiomyocytes and regulates cyclic AMP levels via protein kinase C-dependent phosphodiesterase activity. Biochem J. 1995;310:439–44.

    PubMed  Google Scholar 

  86. Schlüter KD, Piper HM. Cardiovascular actions of parathyroid hormone and parathyroid hormone-related peptide. Cardiovasc Res. 1998;37:34–41.

    Article  PubMed  Google Scholar 

  87. Lütteke D, Ross G, Abdallah Y, Schäfer C, Piper HM, Schlüter KD. Parathyroid hormone-related peptide improves contractile responsiveness of adult rat cardiomyocytes with depressed cell function irrespectively of oxidative inhibition. Basic Res Cardiol. 2005;100:320–7.

    Article  PubMed  CAS  Google Scholar 

  88. Tastan I, Schreckenberg R, Mufti S, Abdallah Y, Piper HM, Schlüter KD. Parathyroid hormone improves contractile performance of adult rat ventricular cardiomyocytes at low concentrations in a non-acute way. Cardiovasc Res. 2009;82:77–83.

    Article  PubMed  CAS  Google Scholar 

  89. Kamalov G, Ahokas RA, Zhao W, Johnson PL, Shahbaz AU, Bhattacharya SK, et al. Temporal responses to intrinsically coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria during aldosteronism. Am J Physiol Heart Circ Physiol. 2010;298:H385–94.

    Article  PubMed  CAS  Google Scholar 

  90. Goodwin KD, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT. Preventing oxidative stress in rats with aldosteronism by calcitriol and dietary calcium and magnesium supplements. Am J Med Sci. 2006;332:73–8.

    Article  PubMed  Google Scholar 

  91. Vidal A, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC, Weber KT. Calcium paradox of aldosteronism and the role of the parathyroid glands. Am J Physiol Heart Circ Physiol. 2006;290:H286–94.

    Article  PubMed  CAS  Google Scholar 

  92. Yang F, Nickerson PA. Effect of parathyroidectomy on arterial hypertrophy, vascular lesions, and aortic calcium content in deoxycorticosterone-induced hypertension. Res Exp Med (Berl). 1988;188:289–97.

    Article  CAS  Google Scholar 

  93. Selektor Y, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT. Cinacalcet and the prevention of secondary hyperparathyroidism in rats with aldosteronism. Am J Med Sci. 2008;335:105–10.

    Article  PubMed  Google Scholar 

  94. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296:301–5.

    Article  PubMed  CAS  Google Scholar 

  95. Weber KT. Extracellular matrix remodeling in heart failure. A role for de novo angiotensin II generation. Circulation. 1997;96:4065–82.

    Article  PubMed  CAS  Google Scholar 

  96. Bell NH, Greene A, Epstein S, Oexmann MJ, Shaw S, Shary J. Evidence for alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76:470–3.

    Article  PubMed  CAS  Google Scholar 

  97. Sawaya BP, Monier-Faugere MC, Ratanapanichkich P, Butros R, Wedlund PJ, Fanti P. Racial differences in parathyroid hormone levels in patients with secondary hyperparathyroidism. Clin Nephrol. 2002;57:51–5.

    PubMed  CAS  Google Scholar 

  98. Zittermann A, Fischer J, Schleithoff SS, Tenderich G, Fuchs U, Koerfer R. Patients with congestive heart failure and healthy controls differ in vitamin D-associated lifestyle factors. Int J Vitam Nutr Res. 2007;77:280–8.

    Article  PubMed  CAS  Google Scholar 

  99. Zittermann A, Schleithoff SS, Gotting C, Dronow O, Fuchs U, Kuhn J, et al. Poor outcome in end-stage heart failure patients with low circulating calcitriol levels. Eur J Heart Fail. 2008;10:321–7.

    Article  PubMed  CAS  Google Scholar 

  100. Zittermann A, Schleithoff SS, Koerfer R. Vitamin D and vascular calcification. Curr Opin Lipidol. 2007;18:41–6.

    Article  PubMed  CAS  Google Scholar 

  101. Ogino K, Ogura K, Kinugasa Y, Furuse Y, Uchida K, Shimoyama M, et al. Parathyroid hormone-related protein is produced in the myocardium and increased in patients with congestive heart failure. J Clin Endocrinol Metab. 2002;87:4722–7.

    Article  PubMed  CAS  Google Scholar 

  102. Zia AA, Komolafe BO, Moten M, Ahokas RA, McGee JE, Rosenberg EW, et al. Supplemental vitamin D and calcium in the management of African-Americans with heart failure having hypovitaminosis D. Am J Med Sci. 2011;341:113–8.

    Article  PubMed  Google Scholar 

  103. Borkowski BJ, Cheema Y, Shahbaz AU, Bhattacharya SK, Weber KT. Cation dyshomeostasis and cardiomyocyte necrosis. The Fleckenstein hypothesis revisited. Eur Heart J. 2011;32:1846–53.

    Article  PubMed  Google Scholar 

  104. Cohen AJ, Roe FJ. Review of risk factors for osteoporosis with particular reference to a possible aetiological role of dietary salt. Food Chem Toxicol. 2000;38:237–53.

    Article  PubMed  CAS  Google Scholar 

  105. Teucher B, Dainty JR, Spinks CA, Majsak-Newman G, Berry DJ, Hoogewerff JA, et al. Sodium and bone health: impact of moderately high and low salt intakes on calcium metabolism in postmenopausal women. J Bone Miner Res. 2008;23:1477–85.

    Article  PubMed  CAS  Google Scholar 

  106. Lee AH, Mull RL, Keenan GF, Callegari PE, Dalinka MK, Eisen HJ, et al. Osteoporosis and bone morbidity in cardiac transplant recipients. Am J Med. 1994;96:35–41.

    Article  PubMed  CAS  Google Scholar 

  107. Kerschan-Schindl K, Strametz-Juranek J, Heinze G, Grampp S, Bieglmayer C, Pacher R, et al. Pathogenesis of bone loss in heart transplant candidates and recipients. J Heart Lung Transplant. 2003;22:843–50.

    Article  PubMed  Google Scholar 

  108. Nishio K, Mukae S, Aoki S, Itoh S, Konno N, Ozawa K, et al. Congestive heart failure is associated with the rate of bone loss. J Intern Med. 2003;253:439–46.

    Article  PubMed  CAS  Google Scholar 

  109. Kenny AM, Boxer R, Walsh S, Hager WD, Raisz LG. Femoral bone mineral density in patients with heart failure. Osteoporos Int. 2006;17:1420–7.

    Article  PubMed  CAS  Google Scholar 

  110. Frost RJ, Sonne C, Wehr U, Stempfle HU. Effects of calcium supplementation on bone loss and fractures in congestive heart failure. Eur J Endocrinol. 2007;156:309–14.

    Article  PubMed  CAS  Google Scholar 

  111. Abou-Raya S, Abou-Raya A. Osteoporosis and congestive heart failure (CHF) in the elderly patient: double disease burden. Arch Gerontol Geriatr. 2009;49:250–4.

    Article  PubMed  Google Scholar 

  112. van Diepen S, Majumdar SR, Bakal JA, McAlister FA, Ezekowitz JA. Heart failure is a risk factor for orthopedic fracture: a population-based analysis of 16,294 patients. Circulation. 2008;118:1946–52.

    Article  PubMed  Google Scholar 

  113. Carbone LD, Cross JD, Raza SH, Bush AJ, Sepanski RJ, Dhawan S, et al. Fracture risk in men with congestive heart failure. Risk reduction with spironolactone. J Am Coll Cardiol. 2008;52:135–8.

    Article  PubMed  Google Scholar 

  114. Law PH, Sun Y, Bhattacharya SK, Chhokar VS, Weber KT. Diuretics and bone loss in rats with aldosteronism. J Am Coll Cardiol. 2005;46:142–6.

    Article  PubMed  CAS  Google Scholar 

  115. Kamalov G, Deshmukh PA, Baburyan NY, Gandhi MS, Johnson PL, Ahokas RA, et al. Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol. 2009;53:414–23.

    Article  PubMed  CAS  Google Scholar 

  116. Schmid C, Kiowski W. Hyperparathyroidism in congestive heart failure. Am J Med. 1998;104:508–9.

    PubMed  CAS  Google Scholar 

  117. Stefenelli T, Pacher R, Woloszczuk W, Glogar D, Kaindl F. Parathyroid hormone and calcium behavior in advanced congestive heart failure [German]. Z Kardiol. 1992;81:121–5.

    PubMed  CAS  Google Scholar 

  118. Zittermann A, Schleithoff SS, Tenderich G, Berthold HK, Korfer R, Stehle P. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure? J Am Coll Cardiol. 2003;41:105–12.

    Article  PubMed  CAS  Google Scholar 

  119. Sugimoto T, Tanigawa T, Onishi K, Fujimoto N, Matsuda A, Nakamori S, et al. Serum intact parathyroid hormone levels predict hospitalisation for heart failure. Heart. 2009;95:395–8.

    Article  PubMed  CAS  Google Scholar 

  120. Pilz S, Tomaschitz A, Drechsler C, Ritz E, Boehm BO, Grammer TB, et al. Parathyroid hormone level is associated with mortality and cardiovascular events in patients undergoing coronary angiography. Eur Heart J. 2010;31:1591–8.

    Article  PubMed  CAS  Google Scholar 

  121. Hagström E, Hellman P, Larsson TE, Ingelsson E, Berglund L, Sundström J, et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation. 2009;119:2765–71.

    Article  PubMed  CAS  Google Scholar 

  122. Hagström E, Ingelsson E, Sundström J, Hellman P, Larsson TE, Berglund L, et al. Plasma parathyroid hormone and risk of congestive heart failure in the community. Eur J Heart Fail. 2010;12:1186–92.

    Article  PubMed  CAS  Google Scholar 

  123. Anderson JL, Vanwoerkom RC, Horne BD, Bair TL, May HT, Lappé DL, et al. Parathyroid hormone, vitamin D, renal dysfunction, and cardiovascular disease: dependent or independent risk factors? Am Heart J. 2011;162:331–9.

    Article  PubMed  CAS  Google Scholar 

  124. Kestenbaum B, Katz R, de Boer I, Hoofnagle A, Sarnak MJ, Shlipak MG, et al. Vitamin D, parathyroid hormone, and cardiovascular events among older adults. J Am Coll Cardiol. 2011;58:1433–41.

    Article  PubMed  CAS  Google Scholar 

  125. Loncar G, Bozic B, Dimkovic S, Prodanovic N, Radojicic Z, Cvorovic V, et al. Association of increased parathyroid hormone with neuroendocrine activation and endothelial dysfunction in elderly men with heart failure. J Endocrinol Invest. 2011;34:e78–85.

    PubMed  CAS  Google Scholar 

  126. Bjorkman M, Sorva A, Tilvis R. Parathyroid hormone as a mortality predictor in frail aged inpatients. Gerontology. 2009;55:601–6.

    Article  PubMed  CAS  Google Scholar 

  127. Schierbeck LL, Jensen TS, Bang U, Jensen G, Køber L, Jensen JE. Parathyroid hormone and vitamin D–markers for cardiovascular and all cause mortality in heart failure. Eur J Heart Fail. 2011;13:626–32.

    Article  PubMed  CAS  Google Scholar 

  128. Carlstedt F, Lind L, Wide L, Lindahl B, Hänni A, Rastad J, et al. Serum levels of parathyroid hormone are related to the mortality and severity of illness in patients in the emergency department. Eur J Clin Invest. 1997;27:977–81.

    Article  PubMed  CAS  Google Scholar 

  129. Carlstedt F, Lind L, Rastad J, Stjernstrom H, Wide L, Ljunghall S. Parathyroid hormone and ionized calcium levels are related to the severity of illness and survival in critically ill patients. Eur J Clin Invest. 1998;28:898–903.

    Article  PubMed  CAS  Google Scholar 

  130. Ishii J, Nomura M, Nakamura Y, Naruse H, Mori Y, Ishikawa T, et al. Risk stratification using a combination of cardiac troponin T and brain natriuretic peptide in patients hospitalized for worsening chronic heart failure. Am J Cardiol. 2002;89:691–5.

    Article  PubMed  CAS  Google Scholar 

  131. Kuwabara Y, Sato Y, Miyamoto T, Taniguchi R, Matsuoka T, Isoda K, et al. Persistently increased serum concentrations of cardiac troponin in patients with acutely decompensated heart failure are predictive of adverse outcomes. Circ J. 2007;71:1047–51.

    Article  PubMed  CAS  Google Scholar 

  132. Peacock 4th WF, De Marco T, Fonarow GC, Diercks D, Wynne J, Apple FS, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358:2117–26.

    Article  PubMed  CAS  Google Scholar 

  133. Zairis MN, Tsiaousis GZ, Georgilas AT, Makrygiannis SS, Adamopoulou EN, Handanis SM, et al. Multimarker strategy for the prediction of 31 days cardiac death in patients with acutely decompensated chronic heart failure. Int J Cardiol. 2009;141:284–90.

    Article  PubMed  Google Scholar 

  134. Löwbeer C, Gustafsson SA, Seeberger A, Bouvier F, Hulting J. Serum cardiac troponin T in patients hospitalized with heart failure is associated with left ventricular hypertrophy and systolic dysfunction. Scand J Clin Lab Invest. 2004;64:667–76.

    Article  PubMed  CAS  Google Scholar 

  135. Horwich TB, Patel J, MacLellan WR, Fonarow GC. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation. 2003;108:833–8.

    Article  PubMed  CAS  Google Scholar 

  136. Sukova J, Ostadal P, Widimsky P. Profile of patients with acute heart failure and elevated troponin I levels. Exp Clin Cardiol. 2007;12:153–6.

    PubMed  Google Scholar 

  137. Ilva T, Lassus J, Siirilä-Waris K, Melin J, Peuhkurinen K, Pulkki K, et al. Clinical significance of cardiac troponins I and T in acute heart failure. Eur J Heart Fail. 2008;10:772–9.

    Article  PubMed  CAS  Google Scholar 

  138. Sato Y, Nishi K, Taniguchi R, Miyamoto T, Fukuhara R, Yamane K, et al. In patients with heart failure and non-ischemic heart disease, cardiac troponin T is a reliable predictor of long-term echocardiographic changes and adverse cardiac events. J Cardiol. 2009;54:221–30.

    Article  PubMed  Google Scholar 

  139. Miller WL, Hartman KA, Burritt MF, Grill DE, Jaffe AS. Profiles of serial changes in cardiac troponin T concentrations and outcome in ambulatory patients with chronic heart failure. J Am Coll Cardiol. 2009;54:1715–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl T. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutledge, M.R., Farah, V., Adeboye, A.A. et al. Parathyroid Hormone, A Crucial Mediator of Pathologic Cardiac Remodeling in Aldosteronism. Cardiovasc Drugs Ther 27, 161–170 (2013). https://doi.org/10.1007/s10557-012-6378-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-012-6378-0

Key words

Navigation