Skip to main content
Log in

Study of Calcium and Iron Carbonate Dissolution Kinetics in Order to Resolve Corrosion Problems in Carbonate Solutions

  • MATERIALS SCIENCE AND CORROSION PROTECTION
  • Published:
Chemical and Petroleum Engineering Aims and scope

It is established that carbonate dissolution kinetics have diffusion and kinetic control, i.e., chemical reaction rate determines the transfer of calcium and carbonate ions into solution and diffusion processes determine the removal of ions into the depth of solution. Kinetics of calcite and siderite dissolution in hydrochloric acid solution in relation to medium pH are studied. Orders of dissolution reaction rate with respect to hydrogen ions n(H+) = 0.6±0.1 are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. V. Artomonova, I. G. Gorichev, E. N. Chernysheva, et al., Nauch. Tekhn. Vestn. Povolzh., No. 1, 61–66 (2013).

  2. Z. Marchenko, Photometric Determination of Elements [Russian translation], Yu. A. Zolotov (ed.), Mir, Moscow (1971).

    Google Scholar 

  3. B. Delmont, Heterogeneous Reaction Kinetics [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  4. Yu. V. Peskov and V. Yu. Filinovskii, Rotating Disk Electrode, Nauka, Moscow (1972).

    Google Scholar 

  5. M. R. Tarasevich, E. I. Khrushcheva, and V. Yu. Filinovskii, Rotating Disk Electrode with a Ring, Nauka, Moscow (1987).

    Google Scholar 

  6. I. V. Dolgaleva, I. G. Gorichev, A. D. Izotov, and V. M. Stepanov, Theor. Found. Chem. Eng., 39, 614–621 (2005).

    Article  CAS  Google Scholar 

  7. C. N. Fredd and H. S. Fogler, Chem. Eng. Sci., 53, No. 22, 3863–3874 (1998).

    Article  CAS  Google Scholar 

  8. E. L. Sjöberg and D. Rickard, Chem. Geol., 42, No. 1–4, 119–136 (1984).

    Article  Google Scholar 

  9. E. L. Sjöberg and Rickard, Geochim. Cosmochim. Acta, 48, No. 3, 485–493 (1984).

  10. L. N. Plummer, T. M. L. Wigley, and D. L. Parkhurst, in: Chemical Modeling in Aqueous Systems: Amer. Chem. Soc. Symp., E. A. Jenne (ed.) (1979), Ser. 93, pp. 537–573.

  11. L. N. Plummer, T. M. L. Wigley, and D. L. Parkhurst, Amer. J. Sci., 278, 179–216 (1978).

    Article  CAS  Google Scholar 

  12. C. N. Fredd and H. S. Fogler, J. Colloid Interface Sci., 204, No. 1, 187–197 (1998).

    Article  CAS  Google Scholar 

Download references

Research was carried out with financial support from the Russian Foundation for Basic Research within the scope of scientific projects Nos. 14-03-00265_a and 14-03-31347_mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Artamonova.

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, No. 9, pp. 38–40, September, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artamonova, I.V., Gorichev, I.G. & Godunov, E.B. Study of Calcium and Iron Carbonate Dissolution Kinetics in Order to Resolve Corrosion Problems in Carbonate Solutions. Chem Petrol Eng 50, 605–609 (2015). https://doi.org/10.1007/s10556-014-9949-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10556-014-9949-z

Keywords

Navigation