Skip to main content

Advertisement

Log in

Cardiovascular diseases in survivors of childhood cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Over the past few decades, the diagnosis and management of children with various malignancies have improved tremendously. As a result, there are an increasing number of children who are long-term cancer survivors. With improved survival, however, has come an increased risk of treatment-related cardiovascular complications that can appear decades after treatment. These problems are serious enough that all caregivers of childhood cancer survivors, including oncologists, cardiologists, and other health care personnel, must pay close attention to the short- and long-term effects of chemotherapy and radiotherapy on these children. This review discusses the effects of treatment-related cardiovascular complications from anthracyclines and radiotherapy and the methods for preventing, screening, and treating these complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miller, K. D., Siegel, R. L., Lin, C. C., Mariotto, A. B., Kramer, J. L., Rowland, J. H., Stein, K. D., Alteri, R., & Jemal, A. (2016). Cancer treatment and survivorship statistics, 2016. CA: a Cancer Journal for Clinicians, 66(4), 271–289.

    Google Scholar 

  2. Barry, E., Alvarez, J. A., Scully, R. E., Miller, T. L., & Lipshultz, S. E. (2007). Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opinion on Pharmacotherapy, 8(8), 1039–1058.

    Article  CAS  PubMed  Google Scholar 

  3. Siegel, R. L., Miller, K. D., Jemal, A., & Cancer statistics. (2015). CA: a Cancer Journal for Clinicians, 65(1), 5–29.

    Google Scholar 

  4. Scully, R. E., & Lipshultz, S. E. (2007). Anthracycline cardiotoxicity in long-term survivors of childhood cancer. Cardiovascular Toxicology, 7(2), 122–128.

    Article  CAS  PubMed  Google Scholar 

  5. Mulrooney, D. A., Yeazel, M. W., Kawashima, T., Mertens, A. C., Mitby, P., Stovall, M., et al. (2009). Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ., 339, b4606.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mertens, A. C., Liu, Q., Neglia, J. P., Wasilewski, K., Leisenring, W., Armstrong, G. T., Robison, L. L., & Yasui, Y. (2008). Cause-specific late mortality among 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. Journal of the National Cancer Institute, 100(19), 1368–1379.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Oeffinger, K. C., Mertens, A. C., Sklar, C. A., Kawashima, T., Hudson, M. M., Meadows, A. T., Friedman, D. L., Marina, N., Hobbie, W., Kadan-Lottick, N. S., Schwartz, C. L., Leisenring, W., Robison, L. L., & Childhood Cancer Survivor Study. (2006). Chronic health conditions in adult survivors of childhood cancer. The New England Journal of Medicine, 355(15), 1572–1582.

    Article  CAS  PubMed  Google Scholar 

  8. Lipshultz, S. E., & Adams, M. J. (2010). Cardiotoxicity after childhood cancer: beginning with the end in mind. Journal of Clinical Oncology, 28(8), 1276–1281.

    Article  PubMed  Google Scholar 

  9. Tukenova, M., Guibout, C., Oberlin, O., Doyon, F., Mousannif, A., Haddy, N., Guérin, S., Pacquement, H., Aouba, A., Hawkins, M., Winter, D., Bourhis, J., Lefkopoulos, D., Diallo, I., & de Vathaire, F. (2010). Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. Journal of Clinical Oncology, 28(8), 1308–1315.

    Article  PubMed  Google Scholar 

  10. Levitt, G., Anazodo, A., Burch, M., & Bunch, K. (2009). Cardiac or cardiopulmonary transplantation in childhood cancer survivors: an increasing need? European Journal of Cancer, 45(17), 3027–3034.

    Article  PubMed  Google Scholar 

  11. Valcovici, M., Andrica, F., Serban, C., & Dragan, S. (2016). Cardiotoxicity of anthracycline therapy: current perspectives. Archives of Medical Science, 12(2), 428–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nysom, K., Holm, K., Lipsitz, S. R., Mone, S. M., Colan, S. D., Orav, E. J., Sallan, S. E., Olsen, J. H., Hertz, H., Jacobsen, J. R., & Lipshultz, S. E. (1998). Relationship between cumulative anthracycline dose and late cardiotoxicity in childhood acute lymphoblastic leukemia. Journal of Clinical Oncology, 16(2), 545–550.

    Article  CAS  PubMed  Google Scholar 

  13. Chu E SA: cancer chemotherapy, 9th ed edn. New York: Lange Medical Books/McGraw-Hill 2004.

  14. Lipshultz, S. E., Alvarez, J. A., & Scully, R. E. (2008). Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart., 94(4), 525–533.

    Article  CAS  PubMed  Google Scholar 

  15. Simunek, T., Sterba, M., Popelova, O., Adamcova, M., Hrdina, R., & Gersl, V. (2009). Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacological Reports, 61(1), 154–171.

    Article  CAS  PubMed  Google Scholar 

  16. De Angelis, A., Piegari, E., Cappetta, D., Marino, L., Filippelli, A., Berrino, L., et al. (2010). Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation., 121(2), 276–292.

    Article  CAS  PubMed  Google Scholar 

  17. Kalyanaraman, B., Joseph, J., Kalivendi, S., Wang, S., Konorev, E., & Kotamraju, S. (2002). Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem, 234–235(1–2), 119–124.

    Article  PubMed  Google Scholar 

  18. Jurcut, R., Wildiers, H., Ganame, J., D'Hooge, J., Paridaens, R., & Voigt, J. U. (2008). Detection and monitoring of cardiotoxicity-what does modern cardiology offer? Supportive Care in Cancer, 16(5), 437–445.

    Article  PubMed  Google Scholar 

  19. Rusconi, P., Gomez-Marin, O., Rossique-Gonzalez, M., Redha, E., Marin, J. R., Lon-Young, M., et al. (2004). Carvedilol in children with cardiomyopathy: 3-year experience at a single institution. The Journal of Heart and Lung Transplantation, 23(7), 832–838.

    Article  PubMed  Google Scholar 

  20. Lowis, S., Lewis, I., Elsworth, A., Weston, C., Doz, F., Vassal, G., Bellott, R., Robert, J., Pein, F., Ablett, S., Pinkerton, R., Frappaz, D., United Kingdom Children’s Cancer Study Group (UKCCSG) New Agents, & Société Française d’Oncologie Pédiatrique (SFOP) Pharmacology Group. (2006). A phase I study of intravenous liposomal daunorubicin (DaunoXome) in paediatric patients with relapsed or resistant solid tumours. British Journal of Cancer, 95(5), 571–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lebrecht, D., Kokkori, A., Ketelsen, U. P., Setzer, B., & Walker, U. A. (2005). Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. The Journal of Pathology, 207(4), 436–444.

    Article  CAS  PubMed  Google Scholar 

  22. Ryberg, M., Nielsen, D., Cortese, G., Nielsen, G., Skovsgaard, T., & Andersen, P. K. (2008). New insight into epirubicin cardiac toxicity: competing risks analysis of 1097 breast cancer patients. Journal of the National Cancer Institute, 100(15), 1058–1067.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., & Yeh, E. T. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18(11), 1639–1642.

    Article  CAS  PubMed  Google Scholar 

  24. Khiati, S., Dalla Rosa, I., Sourbier, C., Ma, X., Rao, V. A., Neckers, L. M., Zhang, H., & Pommier, Y. (2014). Mitochondrial topoisomerase I (top1mt) is a novel limiting factor of doxorubicin cardiotoxicity. Clinical Cancer Research, 20(18), 4873–4881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Atayde, A. R., Sallan, S. E., & Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. The New England Journal of Medicine, 324(12), 808–815.

    Article  CAS  PubMed  Google Scholar 

  26. Lipshultz, S. E., Lipsitz, S. R., Mone, S. M., Goorin, A. M., Sallan, S. E., Sanders, S. P., Orav, E. J., Gelber, R. D., & Colan, S. D. (1995). Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. The New England Journal of Medicine, 332(26), 1738–1743.

    Article  CAS  PubMed  Google Scholar 

  27. Krischer, J. P., Epstein, S., Cuthbertson, D. D., Goorin, A. M., Epstein, M. L., & Lipshultz, S. E. (1997). Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. Journal of Clinical Oncology, 15(4), 1544–1552.

    Article  CAS  PubMed  Google Scholar 

  28. Lipshultz, S. E., Karnik, R., Sambatakos, P., Franco, V. I., Ross, S. W., & Miller, T. L. (2014). Anthracycline-related cardiotoxicity in childhood cancer survivors. Current Opinion in Cardiology, 29(1), 103–112.

    Article  PubMed  Google Scholar 

  29. Rinehart, J. J., Lewis, R. P., & Balcerzak, S. P. (1974). Adriamycin cardiotoxicity in man. Annals of Internal Medicine, 81(4), 475–478.

    Article  CAS  PubMed  Google Scholar 

  30. Grenier, M. A., & Lipshultz, S. E. (1998). Epidemiology of anthracycline cardiotoxicity in children and adults. Seminars in Oncology, 25(4 Suppl 10), 72–85.

    CAS  PubMed  Google Scholar 

  31. Bryant, J., Picot, J., Levitt, G., Sullivan, I., Baxter, L., & Clegg, A. (2007). Cardioprotection against the toxic effects of anthracyclines given to children with cancer: a systematic review. Health Technol Assess, 11(27):iii, ix-x), 1–84.

    Article  Google Scholar 

  32. Kremer, L. C. M., van der Pal, H. J. H., Offringa, M., van Dalen, E. C., & Voute, P. A. (2002). Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. Annals of Oncology, 13(6), 819–829.

    Article  CAS  PubMed  Google Scholar 

  33. Smith, L. A., Cornelius, V. R., Plummer, C. J., Levitt, G., Verrill, M., Canney, P., et al. (2010). Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer, 10, 337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wojnowski, L., Kulle, B., Schirmer, M., Schluter, G., Schmidt, A., & Rosenberger, A. (2005). NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation., 112.

  35. Linschoten, M., Teske, A. J., Cramer, M. J., van der Wall, E., & Asselbergs, F. W. (2018). Chemotherapy-related cardiac dysfunction: a systematic review of genetic variants modulating individual risk. Circ Genom Precis Med., 11(1), e001753.

    Article  CAS  PubMed  Google Scholar 

  36. Chang, V. Y., & Wang, J. J. (2018). Pharmacogenetics of chemotherapy-induced cardiotoxicity. Current Oncology Reports, 20(7), 52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aminkeng, F., Ross, C. J., Rassekh, S. R., Hwang, S., Rieder, M. J., Bhavsar, A. P., Smith, A., Sanatani, S., Gelmon, K. A., Bernstein, D., Hayden, M. R., Amstutz, U., Carleton, B. C., & CPNDS Clinical Practice Recommendations Group. (2016). Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. British Journal of Clinical Pharmacology, 82(3), 683–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magdy, T., Burmeister, B. T., & Burridge, P. W. (2016). Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: What is missing? Pharmacology & Therapeutics, 168, 113–125.

    Article  CAS  Google Scholar 

  39. Leong, S. L., Chaiyakunapruk, N., & Lee, S. W. (2017). Candidate gene association studies of anthracycline-induced cardiotoxicity: a systematic review and meta-analysis., 7(1), 39.

  40. Blanco, J. G., Leisenring, W. M., Gonzalez-Covarrubias, V. M., Kawashima, T. I., Davies, S. M., Relling, M. V., Robison, L. L., Sklar, C. A., Stovall, M., & Bhatia, S. (2008). Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer., 112(12), 2789–2795.

    Article  PubMed  Google Scholar 

  41. Blanco, J. G., Sun, C. L., Landier, W., Chen, L., Esparza-Duran, D., Leisenring, W., Mays, A., Friedman, D. L., Ginsberg, J. P., Hudson, M. M., Neglia, J. P., Oeffinger, K. C., Ritchey, A. K., Villaluna, D., Relling, M. V., & Bhatia, S. (2012). Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes--a report from the Children’s Oncology Group. Journal of Clinical Oncology, 30(13), 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  42. Salvatorelli, E., Menna, P., Chello, M., Covino, E., & Minotti, G. (2018). Low-dose anthracycline and risk of heart failure in a pharmacokinetic model of human myocardium exposure: analog specificity and role of secondary alcohol metabolites. The Journal of Pharmacology and Experimental Therapeutics, 364(2), 323–331.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, X., Sun, C. L., Quinones-Lombrana, A., Singh, P., Landier, W., Hageman, L., et al. (2016). CELF4 variant and anthracycline-related cardiomyopathy: a Children’s Oncology Group Genome-Wide Association Study. Journal of Clinical Oncology, 34(8), 863–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lipshultz, S. E., Lipsitz, S. R., Kutok, J. L., Miller, T. L., Colan, S. D., Neuberg, D. S., Stevenson, K. E., Fleming, M. D., Sallan, S. E., Franco, V. I., Henkel, J. M., Asselin, B. L., Athale, U. H., Clavell, L. A., Michon, B., Laverdiere, C., Larsen, E., Kelly, K. M., & Silverman, L. B. (2013). Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer., 119(19), 3555–3562.

    Article  CAS  PubMed  Google Scholar 

  45. Chow, E. J., Chen, Y., Kremer, L. C., Breslow, N. E., Hudson, M. M., Armstrong, G. T., Border, W. L., Feijen, E. A., Green, D. M., Meacham, L. R., Meeske, K. A., Mulrooney, D. A., Ness, K. K., Oeffinger, K. C., Sklar, C. A., Stovall, M., van der Pal, H., Weathers, R. E., Robison, L. L., & Yasui, Y. (2015). Individual prediction of heart failure among childhood cancer survivors. Journal of Clinical Oncology, 33(5), 394–402.

    Article  PubMed  Google Scholar 

  46. Mordente, A., Meucci, E., Silvestrini, A., Martorana, G. E., & Giardina, B. (2009). New developments in anthracycline-induced cardiotoxicity. Current Medicinal Chemistry, 16(13), 1656–1672.

    Article  CAS  PubMed  Google Scholar 

  47. Brown, S. A., Sandhu, N., & Herrmann, J. (2015). Systems biology approaches to adverse drug effects: the example of cardio-oncology. Nature Reviews. Clinical Oncology, 12(12), 718–731.

    Article  CAS  PubMed  Google Scholar 

  48. Lenihan, D. J., Oliva, S., Chow, E. J., & Cardinale, D. (2013). Cardiac toxicity in cancer survivors. Cancer., 119, 2131–2142.

    Article  PubMed  Google Scholar 

  49. Lipshultz, S. E., Cochran, T. R., Franco, V. I., & Miller, T. L. (2013). Treatment-related cardiotoxicity in survivors of childhood cancer. Nature Reviews. Clinical Oncology, 10(12), 697–710.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, X., Chen, Y., Hageman, L., Singh, P., Landier, W., Blanco, J. G., et al. (2019). Risk prediction of anthracycline-related cardiomyopathy (AC) in childhood cancer survivors (CCS): A COG-ALTE03N1 and CCSS report., 37(15_suppl), 10015–10015.

  51. Giantris, A., Abdurrahman, L., Hinkle, A., Asselin, B., & Lipshultz, S. E. (1998). Anthracycline-induced cardiotoxicity in children and young adults. Critical Reviews in Oncology/Hematology, 27(1), 53–68.

    Article  CAS  PubMed  Google Scholar 

  52. Simbre, V. C., Duffy, S. A., Dadlani, G. H., Miller, T. L., & Lipshultz, S. E. (2005). Cardiotoxicity of cancer chemotherapy: implications for children. Paediatric Drugs, 7(3), 187–202.

    Article  PubMed  Google Scholar 

  53. Adams, M. J., & Lipshultz, S. E. (2005). Pathophysiology of anthracycline- and radiation-associated cardiomyopathies: implications for screening and prevention. Pediatric Blood & Cancer, 44(7), 600–606.

    Article  Google Scholar 

  54. Trachtenberg, B. H., Landy, D. C., Franco, V. I., Henkel, J. M., Pearson, E. J., Miller, T. L., & Lipshultz, S. E. (2011). Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatric Cardiology, 32(3), 342–353.

    Article  PubMed  Google Scholar 

  55. Bristow, M. R., Mason, J. W., Billingham, M. E., & Daniels, J. R. (1978). Doxorubicin cardiomyopathy: evaluation by phonocardiography, endomyocardial biopsy, and cardiac catheterization. Annals of Internal Medicine, 88(2), 168–175.

    Article  CAS  PubMed  Google Scholar 

  56. Lipshultz, S. E., Lipsitz, S. R., Sallan, S. E., Dalton, V. M., Mone, S. M., Gelber, R. D., & Colan, S. D. (2005). Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. Journal of Clinical Oncology, 23(12), 2629–2636.

    Article  CAS  PubMed  Google Scholar 

  57. Lipshultz, S. E., Scully, R. E., Stevenson, K. E., Franco, V. I., Neuberg, D. S., Colan, S. D., et al. (2014). Hearts too small for body size after doxorubicin for childhood leukemia: Grinch syndrome. J Clin Oncol, 32, –10021 (abstr.).

  58. Wouters, K. A., Kremer, L. C., Miller, T. L., Herman, E. H., & Lipshultz, S. E. (2005). Protecting against anthracycline-induced myocardial damage: A review of the most promising strategies. British Journal of Haematology, 131(5), 561–578.

    Article  CAS  PubMed  Google Scholar 

  59. Lipshultz, S. E. (1996). Dexrazoxane for protection against cardiotoxic effects of anthracyclines in children. Journal of Clinical Oncology, 14(2), 328–331.

    Article  CAS  PubMed  Google Scholar 

  60. Hasinoff, B. B., & Herman, E. H. (2007). Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovascular Toxicology, 7(2), 140–144.

    Article  CAS  PubMed  Google Scholar 

  61. Hutchins, K. K., Siddeek, H., Franco, V. I., & Lipshultz, S. E. (2017). Prevention of cardiotoxicity among survivors of childhood cancer. British Journal of Clinical Pharmacology, 83(3), 455–465.

    Article  PubMed  Google Scholar 

  62. Vejpongsa, P., & Yeh, E. T. (2014). Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. Journal of the American College of Cardiology, 64(9), 938–945.

    Article  CAS  PubMed  Google Scholar 

  63. Chang, H. M., Moudgil, R., Scarabelli, T., Okwuosa, T. M., & Yeh, E. T. H. (2017). Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 1. Journal of the American College of Cardiology, 70(20), 2536–2551.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lipshultz, S. E., Rifai, N., Sallan, S. E., Lipsitz, S. R., Dalton, V., Sacks, D. B., & Ottlinger, M. E. (1997). Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation., 96(8), 2641–2648.

    Article  CAS  PubMed  Google Scholar 

  65. Armenian, S. H., & Ehrhardt, M. J. (2019). Optimizing cardiovascular care in children with acute myeloid leukemia to improve cancer-related outcomes. Journal of Clinical Oncology, 37(1), 1–6.

    Article  PubMed  Google Scholar 

  66. Questions and answers on cardioxane [http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/Cardioxane/human_referral_000421.jsp&mid=WC0b01ac05805c516f].

  67. Reichardt, P., Tabone, M. D., Mora, J., Morland, B., & Jones, R. L. (2018). Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: re-evaluating the European labeling. Future Oncology.

  68. Lipshultz, S. E. (2018). Letter by Lipshultz regarding article, “Anthracycline cardiotoxicity: worrisome enough to have you quaking?”. Circulation Research, 122(7), e62–e63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bansal, N., Amdani, S., Lipshultz, E. R., & Lipshultz, S. E. (2017). Chemotherapy-induced cardiotoxicity in children. Expert Opinion on Drug Metabolism & Toxicology, 13(8), 817–832.

    Article  CAS  Google Scholar 

  70. Lipshultz, S. E., & Herman, E. H. (2018). Anthracycline cardiotoxicity: the importance of horizontally integrating pre-clinical and clinical research. Cardiovascular Research, 114(2), 205–209.

    Article  CAS  PubMed  Google Scholar 

  71. Bansal, N., Adams, M. J., Ganatra, S., Colan, S. D., Aggarwal, S., Steiner, R., et al. (2019). Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardio-Oncology., 5(1), 18.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cardinale, D., Ciceri, F., Latini, R., Franzosi, M. G., Sandri, M. T., Civelli, M., Cucchi, G., Menatti, E., Mangiavacchi, M., Cavina, R., Barbieri, E., Gori, S., Colombo, A., Curigliano, G., Salvatici, M., Rizzo, A., Ghisoni, F., Bianchi, A., Falci, C., Aquilina, M., Rocca, A., Monopoli, A., Milandri, C., Rossetti, G., Bregni, M., Sicuro, M., Malossi, A., Nassiacos, D., Verusio, C., Giordano, M., Staszewsky, L., Barlera, S., Nicolis, E. B., Magnoli, M., Masson, S., Cipolla, C. M., & ICOS-ONE Study Investigators. (2018). Anthracycline-induced cardiotoxicity: A multicenter randomised trial comparing two strategies for guiding prevention with enalapril: the International CardioOncology Society-one trial. European Journal of Cancer, 94, 126–137.

    Article  CAS  PubMed  Google Scholar 

  73. Carver, J. R., Shapiro, C. L., Ng, A., Jacobs, L., Schwartz, C., Virgo, K. S., et al. (2007). American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. Journal of Clinical Oncology, 25(25), 3991–4008.

    Article  CAS  PubMed  Google Scholar 

  74. Burnett Jr., H. W., Steinberg, I., & Dotter, C. T. (1952). Seven-year survival after radiation therapy in a patient with inoperable cancer of the lung. The New England Journal of Medicine, 247(22), 850–851.

    Article  PubMed  Google Scholar 

  75. Wu, L., Pang, S., Yao, Q., Jian, C., Lin, P., Feng, F., Li, H., & Li, Y. (2017). Population-based study of effectiveness of neoadjuvant radiotherapy on survival in US rectal cancer patients according to age. Scientific Reports, 7(1), 3471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Thames Jr., H. D., Withers, H. R., Peters, L. J., & Fletcher, G. H. (1982). Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. International Journal of Radiation Oncology, Biology, Physics, 8(2), 219–226.

    Article  PubMed  Google Scholar 

  77. Darby, S. C., Ewertz, M., McGale, P., Bennet, A. M., Blom-Goldman, U., Bronnum, D., et al. (2013). Risk of ischemic heart disease in women after radiotherapy for breast cancer. The New England Journal of Medicine, 368(11), 987–998.

    Article  CAS  PubMed  Google Scholar 

  78. Ming, X., Feng, Y., Yang, C., Wang, W., Wang, P., & Deng, J. (2016). Radiation-induced heart disease in lung cancer radiotherapy: a dosimetric update. Medicine (Baltimore), 95(41), e5051.

    Article  CAS  Google Scholar 

  79. Heidenreich, P. A., Schnittger, I., Strauss, H. W., Vagelos, R. H., Lee, B. K., Mariscal, C. S., Tate, D. J., Horning, S. J., Hoppe, R. T., & Hancock, S. L. (2007). Screening for coronary artery disease after mediastinal irradiation for Hodgkin’s disease. Journal of Clinical Oncology, 25(1), 43–49.

    Article  PubMed  Google Scholar 

  80. Kole, T. P., Aghayere, O., Kwah, J., Yorke, E. D., & Goodman, K. A. (2012). Comparison of heart and coronary artery doses associated with intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for distal esophageal cancer. International Journal of Radiation Oncology, Biology, Physics, 83(5), 1580–1586.

    Article  PubMed  Google Scholar 

  81. Wu, W. C., Chan, C. L., Wong, Y. W., & Cuijpers, J. P. (2010). A study on the influence of breathing phases in intensity-modulated radiotherapy of lung tumours using four-dimensional CT. The British Journal of Radiology, 83(987), 252–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fajardo, L. F., Eltringham, J. R., & Steward, J. R. (1976). Combined cardiotoxicity of adriamycin and x-radiation. Laboratory Investigation, 34(1), 86–96.

    CAS  PubMed  Google Scholar 

  83. Saiki, H., Moulay, G., Guenzel, A. J., Liu, W., Decklever, T. D., Classic, K. L., Pham, L., Chen, H. H., Burnett, J. C., Russell, S. J., & Redfield, M. M. (2017). Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. American Journal of Physiology. Heart and Circulatory Physiology, 313(2), H392–H407.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wynn, T. A. (2004). Fibrotic disease and the T(H)1/T(H)2 paradigm. Nature Reviews. Immunology, 4(8), 583–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schultz-Hector, S., & Trott, K. R. (2007). Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? International Journal of Radiation Oncology, Biology, Physics, 67(1), 10–18.

    Article  CAS  PubMed  Google Scholar 

  86. Yarnold, J., & Brotons, M. C. (2010). Pathogenetic mechanisms in radiation fibrosis. Radiotherapy and Oncology, 97(1), 149–161.

    Article  CAS  PubMed  Google Scholar 

  87. Stewart, J. R., & Fajardo, L. F. (1984). Radiation-induced heart disease: an update. Progress in Cardiovascular Diseases, 27(3), 173–194.

    Article  CAS  PubMed  Google Scholar 

  88. Shapiro, C. L. (2018). Cancer survivorship. The New England Journal of Medicine, 379(25), 2438–2450.

    Article  PubMed  Google Scholar 

  89. Shapiro, C. L., & Recht, A. (2001). Side effects of adjuvant treatment of breast cancer. The New England Journal of Medicine, 344(26), 1997–2008.

    Article  CAS  PubMed  Google Scholar 

  90. Loffler, A. I., & Bourque, J. M. (2016). Coronary microvascular dysfunction, microvascular angina, and management. Current Cardiology Reports, 18(1), 1.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Melikian, N., De Bruyne, B., Fearon, W. F., & MacCarthy, P. A. (2008). The pathophysiology and clinical course of the normal coronary angina syndrome (cardiac syndrome X). Progress in Cardiovascular Diseases, 50(4), 294–310.

    Article  PubMed  Google Scholar 

  92. Seddon, B., Cook, A., Gothard, L., Salmon, E., Latus, K., Underwood, S. R., & Yarnold, J. (2002). Detection of defects in myocardial perfusion imaging in patients with early breast cancer treated with radiotherapy. Radiotherapy and Oncology, 64(1), 53–63.

    Article  PubMed  Google Scholar 

  93. Marinescu, M. A., Loffler, A. I., Ouellette, M., Smith, L., Kramer, C. M., & Bourque, J. M. (2015). Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC: Cardiovascular Imaging, 8(2), 210–220.

    PubMed  Google Scholar 

  94. Tschope, C., & Van Linthout, S. (2014). New insights in (inter)cellular mechanisms by heart failure with preserved ejection fraction. Current Heart Failure Reports, 11(4), 436–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Faccini, A., Kaski, J. C., & Camici, P. G. (2016). Coronary microvascular dysfunction in chronic inflammatory rheumatoid diseases. European Heart Journal, 37(23), 1799–1806.

    Article  PubMed  Google Scholar 

  96. Camici, P. G., & Crea, F. (2007). Coronary microvascular dysfunction. The New England Journal of Medicine, 356(8), 830–840.

    Article  CAS  PubMed  Google Scholar 

  97. Richardson, R. B. (2009). Ionizing radiation and aging: rejuvenating an old idea. Aging (Albany NY), 1(11), 887–902.

    Article  CAS  Google Scholar 

  98. Baverstock, K., & Karotki, A. V. (2011). Towards a unifying theory of late stochastic effects of ionizing radiation. Mutation Research, 718(1–2), 1–9.

    CAS  PubMed  Google Scholar 

  99. Furth, J., Upton, A. C., Christenberry, K. W., Benedict, W. H., & Moshman, J. (1954). Some late effects in mice of ionizing radiation from an experimental nuclear detonation. Radiology., 63(4), 562–570.

    Article  CAS  PubMed  Google Scholar 

  100. Sokolova, N. V., & Gorshenina, T. I. (1959). Relation of the localization of radiation injury to functional state of the organ. 1. Biulleten’ Eksperimental’, 48, 29–34.

    CAS  Google Scholar 

  101. Edwards, A. A., & Lloyd, D. C. (1998). Risks from ionising radiation: deterministic effects. Journal of Radiological Protection, 18(3), 175–183.

    Article  CAS  PubMed  Google Scholar 

  102. Huang, Y. J., Harrison, A., Sarkar, V., Rassiah-Szegedi, P., Zhao, H., Szegedi, M., Huang, L., Wilson, B., Gaffney, D. K., & Salter, B. J. (2016). Detection of late radiation damage on left atrial fibrosis using cardiac late gadolinium enhancement magnetic resonance imaging. Adv Radiat Oncol., 1(2), 106–114.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rubin, E., Camara, J., Grayzel, D. M., & Zak, F. G. (1963). Radiation-induced cardiac fibrosis. The American Journal of Medicine, 34, 71–75.

    Article  CAS  PubMed  Google Scholar 

  104. Herrmann, J., Lerman, A., Sandhu, N. P., Villarraga, H. R., Mulvagh, S. L., & Kohli, M. (2014). Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clinic Proceedings, 89(9), 1287–1306.

    Article  PubMed  Google Scholar 

  105. Cuomo, J. R., Sharma, G. K., Conger, P. D., & Weintraub, N. L. (2016). Novel concepts in radiation-induced cardiovascular disease. World Journal of Cardiology, 8(9), 504–519.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Antonadou, D., Coliarakis, N., Synodinou, M., Athanassiou, H., Kouveli, A., Verigos, C., et al. (2001). Randomized phase III trial of radiation treatment +/− amifostine in patients with advanced-stage lung cancer. International Journal of Radiation Oncology, Biology, Physics, 51(4), 915–922.

    Article  CAS  PubMed  Google Scholar 

  107. Nakamura, H., Arakawa, K., Itakura, H., Kitabatake, A., Goto, Y., Toyota, T., Nakaya, N., Nishimoto, S., Muranaka, M., Yamamoto, A., Mizuno, K., Ohashi, Y., & MEGA Study Group. (2006). Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study): a prospective randomised controlled trial. Lancet., 368(9542), 1155–1163.

    Article  CAS  PubMed  Google Scholar 

  108. Haydont, V., Bourgier, C., Pocard, M., Lusinchi, A., Aigueperse, J., Mathe, D., et al. (2007). Pravastatin inhibits the Rho/CCN2/extracellular matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats. Clinical Cancer Research, 13(18 Pt 1), 5331–5340.

    Article  CAS  PubMed  Google Scholar 

  109. Holler, V., Buard, V., Gaugler, M. H., Guipaud, O., Baudelin, C., Sache, A., Perez Mdel, R., Squiban, C., Tamarat, R., Milliat, F., & Benderitter, M. (2009). Pravastatin limits radiation-induced vascular dysfunction in the skin. The Journal of Investigative Dermatology, 129(5), 1280–1291.

    Article  CAS  PubMed  Google Scholar 

  110. Dainiak, N., & Tan, B. J. (1995). Utility of biological membranes as indicators for radiation exposure: alterations in membrane structure and function over time. Stem Cells, 13(Suppl 1), 142–152.

    CAS  PubMed  Google Scholar 

  111. Lett, J. T. (1992). Damage to cellular DNA from particulate radiations, the efficacy of its processing and the radiosensitivity of mammalian cells. Emphasis on DNA double strand breaks and chromatin breaks. Radiation and Environmental Biophysics, 31(4), 257–277.

    Article  CAS  PubMed  Google Scholar 

  112. Amini P, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Cheki M, et al. Mechanisms for radioprotection by melatonin; can it be used as a radiation countermeasure? Curr Mol Pharmacol. 2018.

  113. Pokharel, S., Rasoul, S., Roks, A. J., van Leeuwen, R. E., van Luyn, M. J., Deelman, L. E., Smits, J. F., Carretero, O., van Gilst, W., & Pinto, Y. M. (2002). N-acetyl-Ser-Asp-Lys-Pro inhibits phosphorylation of Smad2 in cardiac fibroblasts. Hypertension., 40(2), 155–161.

    Article  CAS  PubMed  Google Scholar 

  114. Sharma, U., Rhaleb, N. E., Pokharel, S., Harding, P., Rasoul, S., Peng, H., & Carretero, O. A. (2008). Novel anti-inflammatory mechanisms of N-Acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage. American Journal of Physiology. Heart and Circulatory Physiology, 294(3), H1226–H1232.

    Article  CAS  PubMed  Google Scholar 

  115. Rhaleb, N. E., Pokharel, S., Sharma, U., & Carretero, O. A. (2011). Renal protective effects of N-acetyl-Ser-Asp-Lys-Pro in deoxycorticosterone acetate-salt hypertensive mice. Journal of Hypertension, 29(2), 330–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rhaleb, N. E., Pokharel, S., Sharma, U. C., Peng, H., Peterson, E., Harding, P., Yang, X. P., & Carretero, O. A. (2013). N-acetyl-Ser-Asp-Lys-Pro inhibits interleukin-1beta-mediated matrix metalloproteinase activation in cardiac fibroblasts. Pflügers Archiv, 465(10), 1487–1495.

    Article  CAS  PubMed  Google Scholar 

  117. Liu, Y. H., D'Ambrosio, M., Liao, T. D., Peng, H., Rhaleb, N. E., Sharma, U., André, S., Gabius, H. J., & Carretero, O. A. (2009). N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. American Journal of Physiology. Heart and Circulatory Physiology, 296(2), H404–H412.

    Article  CAS  PubMed  Google Scholar 

  118. Grillon, C., Rieger, K., Bakala, J., Schott, D., Morgat, J. L., Hannappel, E., Voelter, W., & Lenfant, M. (1990). Involvement of thymosin beta 4 and endoproteinase Asp-N in the biosynthesis of the tetrapeptide AcSerAspLysPro a regulator of the hematopoietic system. FEBS Letters, 274(1–2), 30–34.

    CAS  PubMed  Google Scholar 

  119. Lenfant, M., Grillon, C., Rieger, K. J., Sotty, D., & Wdzieczak-Bakala, J. (1991). Formation of acetyl-Ser-Asp-Lys-Pro, a new regulator of the hematopoietic system, through enzymatic processing of thymosin beta 4. Annals of the New York Academy of Sciences, 628, 115–125.

    Article  CAS  PubMed  Google Scholar 

  120. Lipshultz, S. E., Sanders, S. P., Goorin, A. M., Krischer, J. P., Sallan, S. E., & Colan, S. D. (1994). Monitoring for anthracycline cardiotoxicity. Pediatrics., 93(3), 433–437.

    CAS  PubMed  Google Scholar 

  121. Lipshultz, S. E., Adams, M. J., Colan, S. D., Constine, L. S., Herman, E. H., Hsu, D. T., Hudson, M. M., Kremer, L. C., Landy, D. C., Miller, T. L., Oeffinger, K. C., Rosenthal, D. N., Sable, C. A., Sallan, S. E., Singh, G. K., Steinberger, J., Cochran, T. R., Wilkinson, J. D., & American Heart Association Congenital Heart Defects Committee of the Council on Cardiovascular Disease in the Young, Council on Basic Cardiovascular Sciences, Council on Cardiovascular and Stroke Nursing, Council on Cardiovascular Radiolo. (2013). Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation., 128(17), 1927–1995.

    Article  PubMed  Google Scholar 

  122. Shankar, S. M., Marina, N., Hudson, M. M., Hodgson, D. C., Adams, M. J., Landier, W., et al. (2008). Monitoring for cardiovascular disease in survivors of childhood cancer: report from the Cardiovascular Disease Task Force of the Children’s Oncology Group. Pediatrics., 121(2), e387–ee96.

    Article  PubMed  Google Scholar 

  123. Fulbright, J. M. (2011). Review of cardiotoxicity in pediatric cancer patients: during and after therapy. Cardiology Research and Practice, 2011.

  124. van Dalen, E. C., van den Brug, M., Caron, H. N., & Kremer, L. C. (2006). Anthracycline-induced cardiotoxicity: comparison of recommendations for monitoring cardiac function during therapy in paediatric oncology trials. European Journal of Cancer, 42(18), 3199–3205.

    Article  CAS  PubMed  Google Scholar 

  125. Lipshultz, S. E., Rifai, N., Dalton, V. M., Levy, D. E., Silverman, L. B., Lipsitz, S. R., Colan, S. D., Asselin, B. L., Barr, R. D., Clavell, L. A., Hurwitz, C. A., Moghrabi, A., Samson, Y., Schorin, M. A., Gelber, R. D., & Sallan, S. E. (2004). The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. The New England Journal of Medicine, 351(2), 145–153.

    Article  CAS  PubMed  Google Scholar 

  126. Malik, A., Jeyaraj, P. A., Calton, R., Uppal, B., Negi, P., Shankar, A., Patil, J., & Mahajan, M. K. (2016). Are biomarkers predictive of anthracycline-induced cardiac dysfunction? Asian Pacific Journal of Cancer Prevention, 17(4), 2301–2305.

    Article  PubMed  Google Scholar 

  127. Landier, W., Bhatia, S., Eshelman, D. A., Forte, K. J., Sweeney, T., Hester, A. L., Darling, J., Armstrong, F. D., Blatt, J., Constine, L. S., Freeman, C. R., Friedman, D. L., Green, D. M., Marina, N., Meadows, A. T., Neglia, J. P., Oeffinger, K. C., Robison, L. L., Ruccione, K. S., Sklar, C. A., & Hudson, M. M. (2004). Development of risk-based guidelines for pediatric cancer survivors: the Children’s Oncology Group Long-Term Follow-Up Guidelines from the Children’s Oncology Group Late Effects Committee and Nursing Discipline. Journal of Clinical Oncology, 22(24), 4979–4990.

    Article  PubMed  Google Scholar 

  128. Lipshultz, S. E., Miller, T. L., Scully, R. E., Lipsitz, S. R., Rifai, N., Silverman, L. B., Colan, S. D., Neuberg, D. S., Dahlberg, S. E., Henkel, J. M., Asselin, B. L., Athale, U. H., Clavell, L. A., Laverdière, C., Michon, B., Schorin, M. A., & Sallan, S. E. (2012). Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. Journal of Clinical Oncology, 30(10), 1042–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, C. J., Pei, X. L., Song, F. Y., Guo, Y., Zhang, Q. L., Shu, X. H., et al. (2017). Early anthracycline-induced cardiotoxicity monitored by echocardiographic Doppler parameters combined with serum hs-cTnT., 34(11), 1593–1600.

  130. Lipshultz, S. E., Landy, D. C., Lopez-Mitnik, G., Lipsitz, S. R., Hinkle, A. S., Constine, L. S., et al. (2012). Cardiovascular status of childhood cancer survivors exposed and unexposed to cardiotoxic therapy. Journal of Clinical Oncology, 30(10), 1050–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Leger, K. J., Leonard, D., Nielson, D., de Lemos, J. A., Mammen, P. P., & Winick, N. J. (2017). Circulating microRNAs: potential markers of cardiotoxicity in children and young adults treated with anthracycline chemotherapy. Journal of the American Heart Association, 6(4), e004653.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Curigliano, G., Cardinale, D., Suter, T., Plataniotis, G., de Azambuja, E., Sandri, M. T., et al. (2012). Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol, 23(Suppl 7:vii), 155–166.

    Article  Google Scholar 

  133. Akam-Venkata, J., Franco, V. I., & Lipshultz, S. E. (2016). Late cardiotoxicity: issues for childhood cancer survivors. Current Treatment Options in Cardiovascular Medicine, 18(7), 47.

    Article  PubMed  Google Scholar 

  134. Yancy, C. W., Jessup, M., Bozkurt, B., Butler, J., Casey Jr., D. E., Colvin, M. M., et al. (2017). 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America. Circulation., 136(6), e137–ee61.

    Article  PubMed  Google Scholar 

  135. Lipshultz, S. E., Lipsitz, S. R., Sallan, S. E., Simbre 2nd, V. C., Shaikh, S. L., Mone, S. M., et al. (2002). Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. Journal of Clinical Oncology, 20(23), 4517–4522.

    Article  CAS  PubMed  Google Scholar 

  136. Silber, J. H., Cnaan, A., Clark, B. J., Paridon, S. M., Chin, A. J., Rychik, J., Hogarty, A. N., Cohen, M. I., Barber, G., Rutkowski, M., Kimball, T. R., Delaat, C., Steinherz, L. J., & Zhao, H. (2004). Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. Journal of Clinical Oncology, 22(5), 820–828.

    Article  CAS  PubMed  Google Scholar 

  137. El-Shitany, N. A., Tolba, O. A., El-Shanshory, M. R., & El-Hawary, E. E. (2012). Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. Journal of Cardiac Failure, 18(8), 607–613.

    Article  CAS  PubMed  Google Scholar 

  138. Shakir, D. K., & Rasul, K. I. (2009). Chemotherapy induced cardiomyopathy: pathogenesis, monitoring and management. Journal of Clinical Medical Research, 1(1), 8–12.

    CAS  Google Scholar 

  139. Lipshultz, S. E., & Colan, S. D. (2004). Cardiovascular trials in long-term survivors of childhood cancer. Journal of Clinical Oncology, 22(5), 769–773.

    Article  PubMed  Google Scholar 

  140. Cooper, W. O., Hernandez-Diaz, S., Arbogast, P. G., Dudley, J. A., Dyer, S., Gideon, P. S., Hall, K., & Ray, W. A. (2006). Major congenital malformations after first-trimester exposure to ACE inhibitors. The New England Journal of Medicine, 354(23), 2443–2451.

    Article  CAS  PubMed  Google Scholar 

  141. Hallas, J., Christensen, R., Andersen, M., Friis, S., & Bjerrum, L. (2012). Long term use of drugs affecting the renin-angiotensin system and the risk of cancer: a population-based case-control study. British Journal of Clinical Pharmacology, 74(1), 180–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ward, K. M., Binns, H., Chin, C., Webber, S. A., Canter, C. E., & Pahl, E. (2004). Pediatric heart transplantation for anthracycline cardiomyopathy: cancer recurrence is rare. The Journal of Heart and Lung Transplantation, 23(9), 1040–1045.

    Article  PubMed  Google Scholar 

  143. Bock, M. J., Pahl, E., Rusconi, P. G., Boyle, G. J., Parent, J. J., Twist, C. J., et al. (2017). Cancer recurrence and mortality after pediatric heart transplantation for anthracycline cardiomyopathy: a report from the Pediatric Heart Transplant Study (PHTS) group. Pediatr Transplant, 21(5).

  144. Cox, C. L., Hudson, M. M., Mertens, A., Oeffinger, K., Whitton, J., Montgomery, M., & Robison, L. L. (2009). Medical screening participation in the childhood cancer survivor study. Archives of Internal Medicine, 169(5), 454–462.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Lipshultz’s work has been supported in part by grants from the National Institutes of Health (HL072705, HL078522, HL053392, CA127642, CA068484, HD052104, AI50274, CA127642, CA068484, HD052102, HD052104, HL087708, HL079233, HL004537, HL087000, HL007188, HL094100, HL095127, HD80002, HD028820), Pfizer, Roche Diagnostics, the Children’s Cardiomyopathy Foundation, Sofia’s Hope, Inc., the Kyle John Rymiszewski Foundation, the Children’s Hospital of Michigan Foundation, the Scott Howard Fund, and the Michael Garil Fund.

Dr. Blanco’s work is supported by National Institutes of Health awards GM073646 and CA245067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Lipshultz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, N., Blanco, J.G., Sharma, U. et al. Cardiovascular diseases in survivors of childhood cancer. Cancer Metastasis Rev 39, 55–68 (2020). https://doi.org/10.1007/s10555-020-09859-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09859-w

Keywords

Navigation