Skip to main content

Advertisement

Log in

Metastatic melanoma moves on: translational science in the era of personalized medicine

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Progress in understanding and treating metastatic melanoma is the result of decades of basic and translational research as well as the development of better in vitro tools for modeling the disease. Here, we review the latest therapeutic options for metastatic melanoma and the known genetic and non-genetic mechanisms of resistance to these therapies, as well as the in vitro toolbox that has provided the greatest insights into melanoma progression. These include next-generation sequencing technologies and more complex 2D and 3D cell culture models to functionally test the data generated by genomics approaches. The combination of hypothesis generating and hypothesis testing paradigms reviewed here will be the foundation for the next phase of metastatic melanoma therapies in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leach, D. R., Krummel, M. F., & Allison, J. P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271(5256), 1734–1736.

    Article  CAS  PubMed  Google Scholar 

  2. Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417(6892), 949–954. doi:10.1038/nature00766.

    Article  CAS  PubMed  Google Scholar 

  3. Tsai, J., Lee, J. T., Wang, W., Zhang, J., Cho, H., Mamo, S., et al. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 3041–3046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raaijmakers, M. I., Rozati, S., Goldinger, S. M., Widmer, D. S., Dummer, R., & Levesque, M. P. (2013). Melanoma immunotherapy: historical precedents, recent successes and future prospects. Immunotherapy, 5(2), 169–182. doi:10.2217/imt.12.162.

    Article  CAS  PubMed  Google Scholar 

  5. Widmer, D. S., Eichhoff, O. M., Dummer, R., & Levesque, M. P. (2015). Melanoma’s next top model, it is in the air. Experimental Dermatology, 24(9), 659–660. doi:10.1111/exd.12757.

  6. Dummer, R., Siano, M., Hunger, R. E., Lindenblatt, N., Braun, R., Michielin, O., et al. (2016). The updated Swiss guidelines 2016 for the treatment and follow-up of cutaneous melanoma. Swiss Medical Weekly, 146, w14279. doi:10.4414/smw.2016.14279.

    PubMed  Google Scholar 

  7. Flaherty, K. T., Lee, S. J., Zhao, F., Schuchter, L. M., Flaherty, L., Kefford, R., et al. (2013). Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. [clinical trial, phase III randomized controlled trial]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31(3), 373–379. doi:10.1200/JCO.2012.42.1529.

    Article  CAS  Google Scholar 

  8. Hauschild, A., Agarwala, S. S., Trefzer, U., Hogg, D., Robert, C., Hersey, P., et al. (2009). Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. [clinical trial, phase III randomized controlled trial research support, non-U.S. Gov’t]. Journal of Clinical Oncology, 27(17), 2823–2830. doi:10.1200/JCO.2007.15.7636.

    Article  CAS  PubMed  Google Scholar 

  9. Falchook, G. S., Long, G. V., Kurzrock, R., Kim, K. B., Arkenau, T. H., Brown, M. P., et al. (2012). Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. [clinical trial, phase I multicenter study research support, non-U.S. Gov’t]. Lancet, 379(9829), 1893–1901. doi:10.1016/S0140-6736(12)60398-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., et al. (2010). Inhibition of mutated, activated BRAF in metastatic melanoma. [clinical trial, phase I multicenter study research support, non-U.S. Gov’t]. The New England Journal of Medicine, 363(9), 809–819. doi:10.1056/NEJMoa1002011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharfman, W. H., Hodi, F. S., Lawrence, D. P., Flaherty, K. T., Amaravadi, R. K., Kim, K. B., et al. 2011. Results from the first-in-human (FIH) phase I study of the oral RAF inhibitor RAF265 administered daily to patients with advanced cutaneous melanoma. In ASCO, Chicago, IL (Vol. 29: (suppl; abstr 8508)). J Clin Oncol.

  12. Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. [clinical trial, phase III comparative study multicenter study randomized controlled trial research support, non-U.S. Gov’t]. The New England Journal of Medicine, 364(26), 2507–2516. doi:10.1056/NEJMoa1103782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flaherty, K. T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem, M., et al. (2012). Improved survival with MEK inhibition in BRAF-mutated melanoma. The New England Journal of Medicine. doi:10.1056/NEJMoa1203421.

    Google Scholar 

  14. Hauschild, A., Grob, J. J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., et al. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet, 380(9839), 358–365. doi:10.1016/S0140-6736(12)60868-X.

    Article  CAS  PubMed  Google Scholar 

  15. Flaherty, K. T., Infante, J. R., Daud, A., Gonzalez, R., Kefford, R. F., Sosman, J., et al. (2012). Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. The New England Journal of Medicine. doi:10.1056/NEJMoa1210093.

    Google Scholar 

  16. Kefford, R., Miller, W. H., Jr., Tan, D. S.-W., Sullivan, R. J., Long, G. V., Tai, W. M. D., et al. 2013. Preliminary results from a phase Ib/II, open-label, dose-escalation study of the oral BRAF inhibitor LGX818 in combination with the oral MEK1/2 inhibitor MEK162 in BRAF V600-dependent advanced solid tumors. In ASCO, Chicago (Vol. 9029).

  17. Larkin, J., Ascierto, P. A., Dreno, B., Atkinson, V., Liszkay, G., Maio, M., et al. (2014). Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. The New England Journal of Medicine, 371(20), 1867–1876. doi:10.1056/NEJMoa1408868.

    Article  PubMed  CAS  Google Scholar 

  18. Long, G. V., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., et al. (2014). Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. The New England Journal of Medicine, 371(20), 1877–1888. doi:10.1056/NEJMoa1406037.

    Article  PubMed  CAS  Google Scholar 

  19. Ribas, A., Gonzalez, R., Pavlick, A., Hamid, O., Gajewski, T. F., Daud, A., et al. (2014). Combination of vemurafenib and cobimetinib in patients with advanced BRAF(V600)-mutated melanoma: a phase 1b study. The Lancet Oncology, 15(9), 954–965. doi:10.1016/S1470-2045(14)70301-8.

    Article  CAS  PubMed  Google Scholar 

  20. Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroyakovsky, D., et al. 2014. COMBI-v: A randomized, open-label, phase III study comparing the combination of dabrafenib (D) and trametinib (T) with vemurafenib (V) as first-line therapy in patients (pts) with unresectable or metastatic BRAF V600E/K mutation-positive cutaneous melanoma. In European Society for Medical Oncology, Madrid, Spain (pp. ID 5768; LBA5764_PR).

  21. Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England Journal of Medicine, 364(26), 2507–2516. doi:10.1056/NEJMoa1103782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472(7341), 90–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jeffrey Alan Sosman, Anna C. Pavlick, Lynn Mara Schuchter, Karl D Lewis, Grant A. McArthur, Charles Lance Cowey, Stergios J Moschos, Keith T. Flaherty, Kevin B. Kim, Jeffrey Weber, Peter Hersey, Georgina V. Long, Donald P. Lawrence, Mark Kockx, Olivia Spleiss, Astrid Koehler, Gideon Bollag, Andrew K. Joe, Kerstin Trunzer, Antoni Ribas (2012). Analysis of molecular mechanisms of response and resistance to vemurafenib (vem) in BRAFV600E melanoma. 2012 ASCO Annual Meeting (abstr 8503).

  24. Trunzer, K., Pavlick, A. C., Schuchter, L., Gonzalez, R., McArthur, G. A., Hutson, T. E., et al. (2013). Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. Journal of Clinical Oncology, 31(14), 1767–1774. doi:10.1200/JCO.2012.44.7888.

    Article  CAS  PubMed  Google Scholar 

  25. Emery, C. M., Vijayendran, K. G., Zipser, M. C., Sawyer, A. M., Niu, L., Kim, J. J., et al. (2009). MEK1 mutations confer resistance to MEK and B-RAF inhibition. [comparative study research support, N.I.H., extramural research support, non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20411–20416. doi:10.1073/pnas.0905833106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Allen, E. M., Wagle, N., Sucker, A., Treacy, D. J., Johannessen, C. M., Goetz, E. M., et al. (2014). The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discovery, 4(1), 94–109. doi:10.1158/2159-8290.CD-13-0617.

    Article  CAS  PubMed  Google Scholar 

  27. Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., et al. (2010). Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 468(7326), 973–977. doi:10.1038/nature09626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi, H., Hugo, W., Kong, X., Hong, A., Koya, R. C., Moriceau, G., et al. (2014). Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discovery, 4(1), 80–93. doi:10.1158/2159-8290.CD-13-0642.

    Article  CAS  PubMed  Google Scholar 

  29. Raaijmakers, M. I., Widmer, D. S., Narechania, A., Eichhoff, O., Freiberger, S. N., Wenzina, J., et al. (2016). Co-existence of BRAF and NRAS driver mutations in the same melanoma cells results in heterogeneity of targeted therapy resistance. Oncotarget, 7(47), 77163–77174. doi:10.18632/oncotarget.12848.

    PubMed  PubMed Central  Google Scholar 

  30. Oberholzer, P. A., Kee, D., Dziunycz, P., Sucker, A., Kamsukom, N., Jones, R., et al. (2012). RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. Journal of Clinical Oncology, 30(3), 316–321. doi:10.1200/JCO.2011.36.7680.

    Article  CAS  PubMed  Google Scholar 

  31. Su, F., Viros, A., Milagre, C., Trunzer, K., Bollag, G., Spleiss, O., et al. (2012). RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. [clinical trial, phase I clinical trial, phase II clinical trial, phase III research support, non-U.S. Gov’t]. The New England Journal of Medicine, 366(3), 207–215. doi:10.1056/NEJMoa1105358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin, W. M., Baker, A. C., Beroukhim, R., Winckler, W., Feng, W., Marmion, J. M., et al. (2008). Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Research, 68(3), 664–673.

    Article  CAS  PubMed  Google Scholar 

  33. Poulikakos, P. I., Persaud, Y., Janakiraman, M., Kong, X., Ng, C., Moriceau, G., et al. (2011). RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature, 480(7377), 387–390. doi:10.1038/nature10662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zipser, M. C., Eichhoff, O. M., Widmer, D. S., Schlegel, N. C., Schoenewolf, N. L., Stuart, D., et al. (2011). A proliferative melanoma cell phenotype is responsive to RAF/MEK inhibition independent of BRAF mutation status. Pigment Cell & Melanoma Research, 24(2), 326–333. doi:10.1111/j.1755-148X.2010.00823.x.

    Article  CAS  Google Scholar 

  35. Villanueva, J., Vultur, A., Lee, J. T., Somasundaram, R., Fukunaga-Kalabis, M., Cipolla, A. K., et al. (2010). Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 18(6), 683–695. doi:10.1016/j.ccr.2010.11.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vergani, E., Vallacchi, V., Frigerio, S., Deho, P., Mondellini, P., Perego, P., et al. (2011). Identification of MET and SRC activation in melanoma cell lines showing primary resistance to PLX4032. [research support, non-U.S. Gov’t]. Neoplasia, 13(12), 1132–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Montagut, C., Sharma, S. V., Shioda, T., McDermott, U., Ulman, M., Ulkus, L. E., et al. (2008). Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. [research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Research, 68(12), 4853–4861. doi:10.1158/0008-5472.CAN-07-6787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., et al. (2010). COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 468(7326), 968–972. doi:10.1038/nature09627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Straussman, R., Morikawa, T., Shee, K., Barzily-Rokni, M., Qian, Z. R., Du, J., et al. (2012). Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature, 487(7408), 500–504. doi:10.1038/nature11183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilson, T. R., Fridlyand, J., Yan, Y., Penuel, E., Burton, L., Chan, E., et al. (2012). Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature, 487(7408), 505–509. doi:10.1038/nature11249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Girotti, M. R., Pedersen, M., Sanchez-Laorden, B., Viros, A., Turajlic, S., Niculescu-Duvaz, D., et al. (2013). Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discovery, 3(2), 158–167. doi:10.1158/2159-8290.CD-12-0386.

    Article  CAS  PubMed  Google Scholar 

  42. Sun, C., Wang, L., Huang, S., Heynen, G. J., Prahallad, A., Robert, C., et al. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature, 508(7494), 118–122. doi:10.1038/nature13121.

    Article  CAS  PubMed  Google Scholar 

  43. Boussemart, L., Malka-Mahieu, H., Girault, I., Allard, D., Hemmingsson, O., Tomasic, G., et al. (2014). eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature, 513(7516), 105–109. doi:10.1038/nature13572.

    Article  CAS  PubMed  Google Scholar 

  44. Menon, D. R., Das, S., Krepler, C., Vultur, A., Rinner, B., Schauer, S., et al. (2015). A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene, 34(34), 4545. doi:10.1038/onc.2014.432.

    Article  CAS  PubMed  Google Scholar 

  45. Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., et al. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141(4), 583–594. doi:10.1016/j.cell.2010.04.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K. M., Speicher, D., et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 23(6), 811–825. doi:10.1016/j.ccr.2013.05.003.

    Article  CAS  PubMed  Google Scholar 

  47. Haferkamp, S., Borst, A., Adam, C., Becker, T. M., Motschenbacher, S., Windhovel, S., et al. (2013). Vemurafenib induces senescence features in melanoma cells. The Journal of Investigative Dermatology, 133(6), 1601–1609. doi:10.1038/jid.2013.6.

    Article  CAS  PubMed  Google Scholar 

  48. Widmer, D. S., Hoek, K. S., Cheng, P. F., Eichhoff, O. M., Biedermann, T., Raaijmakers, M. I., et al. (2013). Hypoxia contributes to melanoma heterogeneity by triggering HIF1α-dependent phenotype switching. The Journal of Investigative Dermatology, 133(10), 2436–2443. doi:10.1038/jid.2013.115.

    Article  CAS  PubMed  Google Scholar 

  49. Lito, P., Pratilas, C. A., Joseph, E. W., Tadi, M., Halilovic, E., Zubrowski, M., et al. (2012). Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell, 22(5), 668–682. doi:10.1016/j.ccr.2012.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gopal, Y. N., Deng, W., Woodman, S. E., Komurov, K., Ram, P., Smith, P. D., et al. (2010). Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Research, 70(21), 8736–8747. doi:10.1158/0008-5472.CAN-10-0902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haq, R., Shoag, J., Andreu-Perez, P., Yokoyama, S., Edelman, H., Rowe, G. C., et al. (2013). Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell, 23(3), 302–315. doi:10.1016/j.ccr.2013.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Abel, E. V., Basile, K. J., Kugel 3rd, C. H., Witkiewicz, A. K., Le, K., Amaravadi, R. K., et al. (2013). Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. The Journal of Clinical Investigation, 123(5), 2155–2168. doi:10.1172/JCI65780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dummer, R., & Flaherty, K. T. (2012). Resistance patterns with tyrosine kinase inhibitors in melanoma: new insights. [research support, non-U.S. Gov’t review]. Current Opinion in Oncology, 24(2), 150–154. doi:10.1097/CCO.0b013e32834fca92.

    Article  CAS  PubMed  Google Scholar 

  54. Frederick, D. T., Salas Fragomeni, R. A., Schalck, A., Ferreiro-Neira, I., Hoff, T., Cooper, Z. A., et al. (2014). Clinical profiling of BCL-2 family members in the setting of BRAF inhibition offers a rationale for targeting de novo resistance using BH3 Mimetics. PloS One, 9(7), e101286. doi:10.1371/journal.pone.0101286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Haq, R., Yokoyama, S., Hawryluk, E. B., Jonsson, G. B., Frederick, D. T., McHenry, K., et al. (2013). BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. [research support, N.I.H., extramural research support, non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4321–4326. doi:10.1073/pnas.1205575110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Muller, J., Krijgsman, O., Tsoi, J., Robert, L., Hugo, W., Song, C., et al. (2014). Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nature Communications, 5, 5712. doi:10.1038/ncomms6712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Smith, M. P., Brunton, H., Rowling, E. J., Ferguson, J., Arozarena, I., Miskolczi, Z., et al. (2016). Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell, 29(3), 270–284. doi:10.1016/j.ccell.2016.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Obenauf, A. C., Zou, Y., Ji, A. L., Vanharanta, S., Shu, W., Shi, H., et al. (2015). Therapy-induced tumour secretomes promote resistance and tumour progression. Nature, 520(7547), 368–372. doi:10.1038/nature14336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martin, S., Dudek-Peric, A. M., Maes, H., Garg, A. D., Gabrysiak, M., Demirsoy, S., et al. (2015). Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells. Biochemical Pharmacology, 93(3), 290–304. doi:10.1016/j.bcp.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  60. Hirata, E., Girotti, M. R., Viros, A., Hooper, S., Spencer-Dene, B., Matsuda, M., et al. (2015). Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell, 27(4), 574–588. doi:10.1016/j.ccell.2015.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaur, A., Webster, M. R., Marchbank, K., Behera, R., Ndoye, A., Kugel 3rd, C. H., et al. (2016). sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature, 532(7598), 250–254. doi:10.1038/nature17392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, T., Dutton-Regester, K., Brown, K. M., & Hayward, N. K. (2016). The genomic landscape of cutaneous melanoma. Pigment Cell & Melanoma Research, 29(3), 266–283. doi:10.1111/pcmr.12459.

    Article  CAS  Google Scholar 

  63. Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278), 191–196. doi:10.1038/nature08658.

    Article  CAS  PubMed  Google Scholar 

  64. Pfeifer, G. P., You, Y. H., & Besaratinia, A. (2005). Mutations induced by ultraviolet light. Mutation Research, 571(1–2), 19–31. doi:10.1016/j.mrfmmm.2004.06.057.

    Article  CAS  PubMed  Google Scholar 

  65. Krauthammer, M., Kong, Y., Ha, B. H., Evans, P., Bacchiocchi, A., McCusker, J. P., et al. (2012). Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genetics, 44(9), 1006–1014. doi:10.1038/ng.2359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hodis, E., Watson, I. R., Kryukov, G. V., Arold, S. T., Imielinski, M., Theurillat, J. P., et al. (2012). A landscape of driver mutations in melanoma. Cell, 150(2), 251–263. doi:10.1016/j.cell.2012.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Viros, A., Sanchez-Laorden, B., Pedersen, M., Furney, S. J., Rae, J., Hogan, K., et al. (2014). Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature, 511(7510), 478–482. doi:10.1038/nature13298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Berger, M. F., Hodis, E., Heffernan, T. P., Deribe, Y. L., Lawrence, M. S., Protopopov, A., et al. (2012). Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 485(7399), 502–506. doi:10.1038/nature11071.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang, F. W., Hodis, E., Xu, M. J., Kryukov, G. V., Chin, L., & Garraway, L. A. (2013). Highly recurrent TERT promoter mutations in human melanoma. Science, 339(6122), 957–959. doi:10.1126/science.1229259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Horn, S., Figl, A., Rachakonda, P. S., Fischer, C., Sucker, A., Gast, A., et al. (2013). TERT promoter mutations in familial and sporadic melanoma. Science, 339(6122), 959–961. doi:10.1126/science.1230062.

    Article  CAS  PubMed  Google Scholar 

  71. Sanborn, J. Z., Chung, J., Purdom, E., Wang, N. J., Kakavand, H., Wilmott, J. S., et al. (2015). Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proceedings of the National Academy of Sciences of the United States of America, 112(35), 10995–11000. doi:10.1073/pnas.1508074112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Harbst, K., Lauss, M., Cirenajwis, H., Isaksson, K., Rosengren, F., Törngren, T., et al. (2016). Multiregion whole-exome sequencing uncovers the genetic evolution and mutational heterogeneity of early-stage metastatic melanoma. Cancer Research, 76(16), 4765–4774. doi:10.1158/0008-5472.CAN-15-3476.

    Article  CAS  PubMed  Google Scholar 

  73. Network, C. G. A. (2015). Genomic classification of cutaneous melanoma. Cell, 161(7), 1681–1696. doi:10.1016/j.cell.2015.05.044.

    Article  CAS  Google Scholar 

  74. Arafeh, R., Qutob, N., Emmanuel, R., Keren-Paz, A., Madore, J., Elkahloun, A., et al. (2015). Recurrent inactivating RASA2 mutations in melanoma. Nature Genetics, 47(12), 1408–1410. doi:10.1038/ng.3427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krauthammer, M., Kong, Y., Bacchiocchi, A., Evans, P., Pornputtapong, N., Wu, C., et al. (2015). Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nature Genetics, 47(9), 996–1002. doi:10.1038/ng.3361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Halaban, R., & Krauthammer, M. (2016). RASopathy gene mutations in melanoma. The Journal of Investigative Dermatology, 136(9), 1755–1759. doi:10.1016/j.jid.2016.05.095.

    Article  CAS  PubMed  Google Scholar 

  77. Shain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., et al. (2015). The genetic evolution of melanoma from precursor lesions. The New England Journal of Medicine, 373(20), 1926–1936. doi:10.1056/NEJMoa1502583.

    Article  PubMed  CAS  Google Scholar 

  78. Berger, M. F., Levin, J. Z., Vijayendran, K., Sivachenko, A., Adiconis, X., Maguire, J., et al. (2010). Integrative analysis of the melanoma transcriptome. Genome Research, 20(4), 413–427. doi:10.1101/gr.103697.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Widmer, D. S., Cheng, P. F., Eichhoff, O. M., Belloni, B. C., Zipser, M. C., Schlegel, N. C., et al. (2012). Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell & Melanoma Research, 25(3), 343–353. doi:10.1111/j.1755-148X.2012.00986.x.

    Article  CAS  Google Scholar 

  80. Hoek, K. S., Eichhoff, O. M., Schlegel, N. C., Dobbeling, U., Kobert, N., Schaerer, L., et al. (2008). In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Research, 68(3), 650–656.

    Article  CAS  PubMed  Google Scholar 

  81. Verfaillie, A., Imrichova, H., Atak, Z. K., Dewaele, M., Rambow, F., Hulselmans, G., et al. (2015). Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nature Communications, 6, 6683. doi:10.1038/ncomms7683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shakhova, O., Cheng, P., Mishra, P. J., Zingg, D., Schaefer, S. M., Debbache, J., et al. (2015). Antagonistic cross-regulation between Sox9 and Sox10 controls an anti-tumorigenic program in melanoma. PLoS Genetics, 11(1), e1004877. doi:10.1371/journal.pgen.1004877.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Cheng, P., Shahkova, O., Widmer, D., Eichhoff, O., Zingg, D., Frommel, S., et al. (2015). Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma. Genome Biology, 16(1), 42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Cheng, P. F., Shakhova, O., Widmer, D. S., Eichhoff, O. M., Zingg, D., Frommel, S. C., et al. (2015). Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma. Genome Biology, 16, 42. doi:10.1186/s13059-015-0594-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth, M. H., Treacy, D., Trombetta, J. J., et al. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science, 352(6282), 189–196. doi:10.1126/science.aad0501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wagle, N., Emery, C., Berger, M. F., Davis, M. J., Sawyer, A., Pochanard, P., et al. (2011). Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. Journal of Clinical Oncology, 29(22), 3085–3096. doi:10.1200/JCO.2010.33.2312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shi, H., Moriceau, G., Kong, X., Lee, M. K., Lee, H., Koya, R. C., et al. (2012). Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nature Communications, 3, 724. doi:10.1038/ncomms1727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chiappetta, C., Proietti, I., Soccodato, V., Puggioni, C., Zaralli, R., Pacini, L., et al. (2015). BRAF and NRAS mutations are heterogeneous and not mutually exclusive in nodular melanoma. Applied Immunohistochemistry & Molecular Morphology, 23(3), 172–177. doi:10.1097/PAI.0000000000000071.

  89. Hugo, W., Shi, H., Sun, L., Piva, M., Song, C., Kong, X., et al. (2015). Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell, 162(6), 1271–1285. doi:10.1016/j.cell.2015.07.061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kemper, K., de Goeje, P. L., Peeper, D. S., & van Amerongen, R. (2014). Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy. Cancer Research, 74(21), 5937–5941. doi:10.1158/0008-5472.CAN-14-1174.

    Article  CAS  PubMed  Google Scholar 

  91. Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth 2nd, M. H., Treacy, D., Trombetta, J. J., et al. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science, 352(6282), 189–196. doi:10.1126/science.aad0501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dummer, R., Hauschild, A., Lindenblatt, N., Pentheroudakis, G., & Keilholz, U. (2015). Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 26(Suppl 5), v126–v132. doi:10.1093/annonc/mdv297.

    Article  PubMed  Google Scholar 

  93. Van Allen, E. M., Miao, D., Schilling, B., Shukla, S. A., Blank, C., Zimmer, L., et al. (2015). Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 350(6257), 207–211. doi:10.1126/science.aad0095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hugo, W., Zaretsky, J. M., Sun, L., Song, C., Moreno, B. H., Hu-Lieskovan, S., et al. (2016). Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell, 165(1), 35–44. doi:10.1016/j.cell.2016.02.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., et al. (2015). Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 348(6230), 124–128. doi:10.1126/science.aaa1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D., et al. (2015). PD-1 blockade in tumors with mismatch-repair deficiency. The New England Journal of Medicine, 372(26), 2509–2520. doi:10.1056/NEJMoa1500596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., et al. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. New England Journal of Medicine, 375(9), 819–829. doi:10.1056/NEJMoa1604958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology, 3(11), 991–998.

    Article  CAS  PubMed  Google Scholar 

  99. Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., et al. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. The New England Journal of Medicine. doi:10.1056/NEJMoa1604958.

    PubMed  PubMed Central  Google Scholar 

  100. Raaijmakers, M. I., Widmer, D. S., Maudrich, M., Koch, T., Langer, A., Flace, A., et al. (2015). A new live-cell biobank workflow efficiently recovers heterogeneous melanoma cells from native biopsies. Experimental Dermatology, 24(5), 377–380. doi:10.1111/exd.12683.

    Article  PubMed  Google Scholar 

  101. Gray-Schopfer, V., Wellbrock, C., & Marais, R. (2007). Melanoma biology and new targeted therapy. Nature, 445(7130), 851–857.

    Article  CAS  PubMed  Google Scholar 

  102. Hill, D. S., Robinson, N. D., Caley, M. P., Chen, M., O'Toole, E. A., Armstrong, J. L., et al. (2015). A novel fully humanized 3D skin equivalent to model early melanoma invasion. Molecular Cancer Therapeutics, 14(11), 2665–2673. doi:10.1158/1535-7163.MCT-15-0394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ramgolam, K., Lauriol, J., Lalou, C., Lauden, L., Michel, L., de la Grange, P., et al. (2011). Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function. PloS One, 6(4), e18784. doi:10.1371/journal.pone.0018784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Johnson, J. I., Decker, S., Zaharevitz, D., Rubinstein, L. V., Venditti, J. M., Schepartz, S., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer, 84(10), 1424–1431. doi:10.1054/bjoc.2001.1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Beaumont, K. A., Mohana-Kumaran, N., & Haass, N. K. (2013). Modeling melanoma in vitro and in vivo. Healthcare (Basel), 2(1), 27–46. doi:10.3390/healthcare2010027.

    Article  Google Scholar 

  106. Nyga, A., Cheema, U., & Loizidou, M. (2011). 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal, 5(3), 239–248. doi:10.1007/s12079-011-0132-4.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ghosh, S., Spagnoli, G. C., Martin, I., Ploegert, S., Demougin, P., Heberer, M., et al. (2005). Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. Journal of Cellular Physiology, 204(2), 522–531. doi:10.1002/jcp.20320.

    Article  CAS  PubMed  Google Scholar 

  108. Cody, N. A., Zietarska, M., Filali-Mouhim, A., Provencher, D. M., Mes-Masson, A. M., & Tonin, P. N. (2008). Influence of monolayer, spheroid, and tumor growth conditions on chromosome 3 gene expression in tumorigenic epithelial ovarian cancer cell lines. BMC Medical Genomics, 1, 34. doi:10.1186/1755-8794-1-34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Thurber, A. E., Douglas, G., Sturm, E. C., Zabierowski, S. E., Smit, D. J., Ramakrishnan, S. N., et al. (2011). Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway. Oncogene, 30(27), 3036–3048. doi:10.1038/onc.2011.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhuang, L., Lee, C. S., Scolyer, R. A., McCarthy, S. W., Palmer, A. A., Zhang, X. D., et al. (2005). Activation of the extracellular signal regulated kinase (ERK) pathway in human melanoma. Journal of Clinical Pathology, 58(11), 1163–1169. doi:10.1136/jcp.2005.025957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Weiswald, L. B., Bellet, D., & Dangles-Marie, V. (2015). Spherical cancer models in tumor biology. Neoplasia, 17(1), 1–15. doi:10.1016/j.neo.2014.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Thoma, C. R., Zimmermann, M., Agarkova, I., Kelm, J. M., & Krek, W. (2014). 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Advanced Drug Delivery Reviews, 69-70, 29–41. doi:10.1016/j.addr.2014.03.001.

    Article  CAS  PubMed  Google Scholar 

  113. Saltari, A., Truzzi, F., Quadri, M., Lotti, R., Palazzo, E., Grisendi, G., et al. (2016). CD271 down-regulation promotes melanoma progression and invasion in three-dimensional models and in zebrafish. The Journal of Investigative Dermatology. doi:10.1016/j.jid.2016.05.116.

    PubMed  Google Scholar 

  114. Smalley, K. S., Lioni, M., Noma, K., Haass, N. K., & Herlyn, M. (2008). In vitro three-dimensional tumor microenvironment models for anticancer drug discovery. Expert Opin Drug Discov, 3(1), 1–10. doi:10.1517/17460441.3.1.1.

    Article  CAS  PubMed  Google Scholar 

  115. Vinci, M., Gowan, S., Boxall, F., Patterson, L., Zimmermann, M., Court, W., et al. (2012). Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology, 10, 29. doi:10.1186/1741-7007-10-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Quintana, E., Shackleton, M., Sabel, M. S., Fullen, D. R., Johnson, T. M., & Morrison, S. J. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222), 593–598. doi:10.1038/nature07567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu, M., Bardia, A., Aceto, N., Bersani, F., Madden, M. W., Donaldson, M. C., et al. (2014). Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science, 345(6193), 216–220. doi:10.1126/science.1253533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim, K. U., Wilson, S. M., Abayasiriwardana, K. S., Collins, R., Fjellbirkeland, L., Xu, Z., et al. (2005). A novel in vitro model of human mesothelioma for studying tumor biology and apoptotic resistance. American Journal of Respiratory Cell and Molecular Biology, 33(6), 541–548. doi:10.1165/rcmb.2004-0355OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. De Wever, O., Hendrix, A., De Boeck, A., Westbroek, W., Braems, G., Emami, S., et al. (2010). Modeling and quantification of cancer cell invasion through collagen type I matrices. The International Journal of Developmental Biology, 54(5), 887–896. doi:10.1387/ijdb.092948ow.

    Article  CAS  PubMed  Google Scholar 

  120. Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D., & Takayama, S. (2012). Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. Journal of Controlled Release, 164(2), 192–204. doi:10.1016/j.jconrel.2012.04.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Berking, C., & Herlyn, M. (2001). Human skin reconstruct models: a new application for studies of melanocyte and melanoma biology. Histology and Histopathology, 16(2), 669–674.

    CAS  PubMed  Google Scholar 

  122. Lee, J. T., Li, L., Brafford, P. A., van den Eijnden, M., Halloran, M. B., Sproesser, K., et al. (2010). PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas. Pigment Cell & Melanoma Research, 23(6), 820–827. doi:10.1111/j.1755-148X.2010.00763.x.

    Article  CAS  Google Scholar 

  123. Enriquez-Navas, P. M., Kam, Y., Das, T., Hassan, S., Silva, A., Foroutan, P., et al. (2016). Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Science Translational Medicine, 8(327), 327ra324. doi:10.1126/scitranslmed.aad7842.

    Article  CAS  Google Scholar 

  124. Das Thakur, M., Salangsang, F., Landman, A. S., Sellers, W. R., Pryer, N. K., Levesque, M. P., et al. (2013). Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature, 494(7436), 251–255. doi:10.1038/nature11814.

    Article  CAS  PubMed  Google Scholar 

  125. Li, F. Z., Dhillon, A. S., Anderson, R. L., McArthur, G., & Ferrao, P. T. (2015). Phenotype switching in melanoma: implications for progression and therapy. Frontiers in Oncology, 5(31). doi:10.3389/fonc.2015.00031

  126. Crowley, E., Di Nicolantonio, F., Loupakis, F., & Bardelli, A. (2013). Liquid biopsy: monitoring cancer-genetics in the blood. Nature Reviews. Clinical Oncology, 10(8), 472–484. doi:10.1038/nrclinonc.2013.110.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell P. Levesque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levesque, M.P., Cheng, P.F., Raaijmakers, M.I. et al. Metastatic melanoma moves on: translational science in the era of personalized medicine. Cancer Metastasis Rev 36, 7–21 (2017). https://doi.org/10.1007/s10555-017-9658-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9658-0

Keywords

Navigation