Skip to main content

Advertisement

Log in

Properties and clinical relevance of MTA1 protein in human cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Among the genes that were found to be abundantly overexpressed in highly metastatic rat cell lines compared to poorly metastatic cell lines, we identified a completely novel complementary DNA (cDNA) without any homologous or related genes in the database in 1994. The full-length cDNA of this rat gene was cloned, sequenced, and named metastasis-associated gene 1 (mta1), and eventually, its human cDNA counterpart, MTA1, was also cloned and sequenced by our group. MTA1 has now been identified as one of the members of a gene family (MTA gene family) and the products of the MTA genes, the MTA proteins, are transcriptional co-regulators that function in histone deacetylation and nucleosome remodeling and have been found in nuclear histone remodeling complexes. Furthermore, MTA1 along with its protein product MTA1 has been repeatedly and independently reported to be overexpressed in a vast range of human cancers and cancer cell lines compared to non-cancerous tissues and cell lines. The expression levels of MTA1 correlate well with the malignant properties of human cancers, strongly suggesting that MTA1 and possibly other MTA proteins (and their genes) could be a new class of molecular targets for cancer diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminars in Oncology, 30(Suppl 16), 30–37.

    Article  CAS  PubMed  Google Scholar 

  2. Manavathi, B., Singh, K., & Kumar, R. (2007). MTA family of coregulators in nuclear receptor biology and pathology. Nuclear Receptor Signaling, 5, 1–8.

    Article  Google Scholar 

  3. Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clinical and Experimental Metastasis, 26(3), 215–227.

    Article  CAS  PubMed  Google Scholar 

  4. Toh, Y., & Nicolson, G. L. (2011). MTA1 of the MTA (metastasis-associated) gene family and its encoded proteins: molecular and regulatory functions and its role in human cancer progression. Atlas of Genetics and Cytogenetics in Oncology and Haematology, 15(3), 303–315.

    Google Scholar 

  5. Toh, Y., & Nicolson, G. L. (2013). Signaling pathways of MTA family proteins as regulators of cancer progression and metastasis. In R. R. Resende & H. Ulrich (Eds.), Trends in stem cell proliferation and cancer research (pp. 251–275). Dordrecht: Springer.

    Chapter  Google Scholar 

  6. Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. Journal of Biological Chemistry, 282(3), 1529–1533.

    Article  CAS  PubMed  Google Scholar 

  7. Luo, J., Su, F., Chen, D., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 408(6810), 377–381.

    Article  CAS  PubMed  Google Scholar 

  8. Moon, H. E., Cheon, H., & Lee, M. S. (2007). Metastasis-associated protein 1 inhibits p53-induced apoptosis. Oncology Reports, 18(5), 1311–1314.

    CAS  PubMed  Google Scholar 

  9. Moon, H. E., Cheon, H., Chun, K. H., Lee, S. K., Kim, Y. S., Jung, B. K., et al. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncology Reports, 16(4), 929–935.

    CAS  PubMed  Google Scholar 

  10. Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO Journal, 25(6), 1231–1241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Li, D. Q., Pakala, S. B., Nair, S. S., Eswaran, J., & Kumar, R. (2012). Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Research, 72(2), 387–394.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Li, D. Q., & Kumar, R. (2010). Mi-2/NURD complex making inroads into DNA-damage response pathway. Cell Cycle, 9(11), 2071–2079.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pakala, S. B., Reddy, S. D., Bui-Nguyen, T. M., Rangparia, S. S., Bommana, A., & Kumar, R. (2010). MTA1 coregulator regulates LPS response via MyD88-dependent signaling. Journal of Biological Chemistry, 285(43), 32787–32792.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.

    CAS  PubMed  Google Scholar 

  15. Nawa, A., Nishimori, K., Lin, P., Maki, Y., Moue, K., Sawada, H., et al. (2000). Tumor metastasis-associated human MTA1 gene: its deduced protein sequence, localization, and association with breast cancer cell proliferation using antisense phosphorothioate oligonucleotides. Journal of Cell Biochemistry, 79(2), 202–212.

    Article  CAS  Google Scholar 

  16. Toh, Y., Oki, E., Oda, S., Tokunaga, E., Ohno, S., Maehara, Y., et al. (1997). Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. International Journal of Cancer, 74(4), 459–463.

    Article  CAS  Google Scholar 

  17. Toh, Y., Kuwano, H., Mori, M., Nicolson, G. L., & Sugimachi, K. (1999). Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas. British Journal of Cancer, 79(11–12), 1723–1726.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.

    Article  CAS  PubMed  Google Scholar 

  19. Toh, Y., Kuninaka, S., Endo, K., Oshiro, T., Ikeda, Y., Nakashima, H., et al. (2000). Molecular analysis of a candidate metastasis-associated gene, MTA1: possible interaction with histone deacetylase 1. Journal of Experimental and Clinical Cancer Research, 19(1), 105–111.

    CAS  PubMed  Google Scholar 

  20. Liu, J., Xu, D., Wang, H., Zhang, Y., Chang, Y., Zhang, J., et al. (2014). The subcellular distribution and function of MTA1 in cancer differentiation. Oncotarget, 5(13), 5153–5164.

    PubMed Central  PubMed  Google Scholar 

  21. Aramaki, Y., Ogawa, K., Toh, Y., Ito, T., Akimitsu, N., Hamamoto, H., et al. Direct interaction between metastasis-associated protein 1 and endophilin 3. FEBS Letter, 579(17), 3731–3736

  22. Paterno, G. D., Li, Y., Luchman, H. A., Ryan, P. J., & Gillespie, L. L. (1997). cDNA cloning of a novel, developmentally regulated immediate early gene activated by fibroblast growth factor and encoding a nuclear protein. Journal of Biological Chemistry, 272(41), 25591–25595.

    Article  CAS  PubMed  Google Scholar 

  23. Paterno, G. D., Mercer, F. C., Chayter, J. J., Yan, G. X., Yan, G. X., Robb, J. D., et al. (1998). Molecular cloning of human er1 cDNA and its differential expression in breast tumours and tumour-derived cell lines. Gene, 222(1), 77–82.

    Article  CAS  PubMed  Google Scholar 

  24. Herman, M. A., Ch’ng, Q., Hettenbach, S. M., Ratliff, T. M., Kenyon, C., & Herman, R. K. (1999). EGL-27 is similar to a metastasis-associated factor and controls cell polarity and cell migration in C. elegans. Development, 126(5), 1055–1064.

    CAS  PubMed  Google Scholar 

  25. Solari, F., Bateman, A., & Ahringer, J. (1999). The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development, 126(11), 2483–2494.

    CAS  PubMed  Google Scholar 

  26. Kleene, R., Zdzieblo, J., Wege, K., & Kern, H. F. (1999). A novel zymogen granule protein (ZG29p) and the nuclear protein MTA1p are differentially expressed by alternative transcription initiation in pancreatic acinar cells of the rat. Journal of Cell Science, 112(Pt15), 2539–2548.

    CAS  PubMed  Google Scholar 

  27. Futamura, M., Nishimori, H., Shiratsuchi, T., Saji, S., Nakamura, Y., & Tokino, T. (1999). Molecular cloning, mapping, and characterization of a novel human gene, MTA1-L1, showing homology to a metastasis-associated gene, MTA1. Journal of Human Genetics, 44(1), 52–56.

    Article  CAS  PubMed  Google Scholar 

  28. Bowen, N. J., Fujita, N., Kajita, M., & Wade, P. A. (2004). Mi-2/NuRD: multiple complexes for many purposes. Biochimica et Biophysica Acta, 1677(1–3), 52–57.

    Article  CAS  PubMed  Google Scholar 

  29. Tong, J. K., Hassig, C. A., Schnitzler, G. R., Kingston, R. E., & Schreiber, S. L. (1998). Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature, 395(6705), 917–921.

    Article  CAS  PubMed  Google Scholar 

  30. Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NuRD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes and Development, 13(15), 1924–1935.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wade, P. A., Gegonne, A., Jones, P. L., Ballesta, R. E., Aubry, F., & Wolffe, A. P. (1999). Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genetics, 23(1), 62–66.

    Article  CAS  PubMed  Google Scholar 

  33. Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). Mta3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113(2), 207–219.

    Article  CAS  PubMed  Google Scholar 

  34. Basta, J., & Rauchman, M. (2014). The nucleosome remodeling and deacetylase complex in development and disease. Translational Research. doi:10.1016/j.trsl.2014.05.003.

    PubMed  Google Scholar 

  35. Kelly, T. K., De Carvalho, D. D., & Jones, P. A. (2010). Epigenetic modifications as therapeutic targets. Nature Biotechnology, 28(10), 1069–1078.

    Article  CAS  PubMed  Google Scholar 

  36. Ramirez, J., & Hagman, J. (2009). The Mi-2/NuRD complex: a critical epigenetic regulator of hematopoietic development, differentiation and cancer. Epigenetics, 4(8), 532–536.

    Article  CAS  PubMed  Google Scholar 

  37. Scanlan, M. J., Chen, Y. T., Williamson, B., Gure, A. O., Stockert, E., Gordan, J. D., et al. (1998). Characterization of human colon cancer antigens recognized by autologous antibodies. International Journal of Cancer, 76(5), 652–658.

    Article  CAS  Google Scholar 

  38. Alqarni, S. S., Murthy, A., Zhang, W., Przewloka, M. R., Silva, A. P., Watson, A. A., et al. (2014). Insight into the architecture of the NuRD complex: structure of the RbAp48-MTA1 subcomplex. Journal of Biological Chemistry, 289(32), 21844–21855.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Toh, Y., Ohga, T., Endo, K., Adachi, E., Kusumoto, H., Haraguchi, M., et al. (2004). Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. International Journal of Cancer, 110(3), 362–367.

    Article  CAS  Google Scholar 

  40. Luo, H., Li, H., Yao, N., Hu, L., & He, T. (2014). Metastasis-associated protein 1 as a new prognostic marker for solid tumors: a meta-analysis of cohort studies. Tumour Biology, 35(6), 5823–5832.

    Article  CAS  PubMed  Google Scholar 

  41. Nicolson, G. L., Nawa, A., Toh, Y., Taniguchi, S., Nishimori, K., & Moustafa, A. (2003). Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clinical and Experimental Metastasis, 20(1), 19–24.

    Article  CAS  PubMed  Google Scholar 

  42. Qian, H., Lu, N., Xue, L., Liang, X., Zhang, X., Fu, M., et al. (2005). Reduced MTA1 expression by RNAi inhibits in vitro invasion and migration of esophageal squamous cell carcinoma cell line. Clinical and Experimental Metastasis, 22(8), 653–662.

    Article  CAS  PubMed  Google Scholar 

  43. Qian, H., Yu, J., Li, Y., Wang, H., Song, C., Zhang, X., et al. (2007). RNA interference against metastasis-associated gene 1 inhibited metastasis of B16F10 melanoma cell in c57BL/6 model. Biology of the Cell, 99, 573–581.

    Article  CAS  PubMed  Google Scholar 

  44. Singh, R. R., & Kumar, R. (2007). MTA family of transcriptional metaregulators in mammary gland morphogenesis and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 115–125.

    Article  PubMed  Google Scholar 

  45. Jang, K. S., Paik, S. S., Chung, H., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Science, 97(5), 374–379.

    Article  CAS  PubMed  Google Scholar 

  46. Martin, M. D., Fischbach, K., Osborne, C. K., Mohsin, S. K., Allred, D. C., & O’Connell, P. (2001). Loss of heterozygosity events impeding breast cancer metastasis contain the mta1 gene. Cancer Research, 61(9), 3578–3580.

    CAS  PubMed  Google Scholar 

  47. Martin, M. D., Hilsenbeck, S. G., Mohsin, S. K., Hopp, T. A., Clark, G. M., Osborne, C. K., et al. (2006). Breast tumors that overexpress nuclear metastasis-associated 1 (MTA1) protein have high recurrence risks but enhanced responses to systemic therapies. Breast Cancer Research and Treatment, 95(1), 7–12.

    Article  CAS  PubMed  Google Scholar 

  48. Sharma, G., Mirza, S., Parshad, R., Srivastava, A., Gupta, S. D., Pandya, P., et al. (2011). Clinical significance of Maspin promoter methylation and loss of its protein expression in invasive ductal breast carcinoma: correlation with VEGF-A and MTA1 expression. Tumour Biology, 32(1), 23–32.

    Article  CAS  PubMed  Google Scholar 

  49. Cheng, C. W., Liu, Y. F., Yu, J. C., Wang, H. W., Ding, S. L., Hsiung, C. N., et al. (2012). Prognostic significance of cyclin D1, beta-catenin, and MTA1 in patients with invasive ductal carcinoma of the breast. Annals of Surgical Oncology, 19(13), 4129–4139.

    Article  PubMed  Google Scholar 

  50. Mao, X. Y., Chen, H., Wang, H., Wei, J., Liu, C., Zheng, H. C., et al. (2012). MTA1 expression correlates significantly with ER-alpha methylation in breast cancer. Tumour Biology, 33(5), 1565–1572.

    Article  CAS  PubMed  Google Scholar 

  51. Li, S. H., Wang, Z., & Liu, X. Y. (2009). Metastasis-associated protein 1 (MTA1) overexpression is closely associated with shorter disease-free interval after complete resection of histologically node-negative esophageal cancer. World Journal of Surgery, 33(9), 1876–1881.

    Article  PubMed  Google Scholar 

  52. Li, S. H., Tian, H., Yue, W. M., Li, L., Gao, C., Li, W. J., et al. (2012). Metastasis-associated protein 1 nuclear expression is closely associated with tumor progression and angiogenesis in patients with esophageal squamous cell cancer. World Journal of Surgery, 36(3), 623–631.

    Article  CAS  PubMed  Google Scholar 

  53. Song, L., Wang, Z., & Liu, X. (2013). MTA1: a prognosis indicator of postoperative patients with esophageal carcinoma. Thoracic and Cardiovascular Surgery, 61(6), 479–485.

    Article  Google Scholar 

  54. Miyatani, T., Kurita, N., Mikami, C., Kashihara, H., Higashijima, J., Yoshikawa, K., et al. (2011). Malignant potential of Barrett’s esophagus: special reference to HDAC-1 and MTA-1 expression. Hepato-Gastroenterology, 58(106), 472–476.

    CAS  PubMed  Google Scholar 

  55. Deng, X., Du, L., Wang, C., Yang, Y., Li, J., Liu, H., et al. (2013). Close association of metastasis-associated protein 1 overexpression with increased angiogenesis and poor survival in patients with histologically node-negative gastric cancer. World Journal of Surgery, 37(4), 792–798.

    Article  PubMed  Google Scholar 

  56. Giannini, R., & Cavallini, A. (2005). Expression analysis of a subset of coregulators and three nuclear receptors in human colorectal carcinoma. Anticancer Research, 25(6B), 4287–4292.

    CAS  PubMed  Google Scholar 

  57. Du, B., Yang, Z. Y., Zhong, X. Y., Fang, M., Yan, Y. R., Qi, G. L., et al. (2011). Metastasis-associated protein 1 induces VEGF-C and facilitates lymphangiogenesis in colorectal cancer. World Journal of Gastroenterology, 17(9), 1219–1226.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Higashijima, J., Kurita, N., Miyatani, T., Yoshikawa, K., Morimoto, S., Nishioka, M., et al. (2011). Expression of histone deacetylase 1 and metastasis-associated protein 1 as prognostic factors in colon cancer. Oncology Reports, 26(2), 343–348.

    PubMed  Google Scholar 

  59. Kidd, M., Modlin, I. M., Mane, S. M., Camp, R. L., Eick, G. N., Latich, I., et al. (2006). Utility of molecular genetic signatures in the delineation of gastric neoplasia. Cancer, 106(7), 1480–1488.

    Article  CAS  PubMed  Google Scholar 

  60. Kidd, M., Modlin, I. M., Mane, S. M., Camp, R. L., Eick, G., & Latich, I. (2006). The role of genetic markers—NAP1L1, MAGE-D2, and MTA1—in defining small-intestinal carcinoid neoplasia. Annals of Surgical Oncology, 13(2), 253–262.

    Article  PubMed  Google Scholar 

  61. Modlin, I. M., Kidd, M., Latich, I., Zikusoka, M. N., Eick, G. N., Mane, S. M., et al. (2006). Genetic differentiation of appendiceal tumor malignancy: a guide for the perplexed. Annals of Surgery, 244(1), 52–60.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Miyake, K., Yoshizumi, T., Imura, S., Sugimoto, K., Batmunkh, E., Kanemura, H., et al. (2008). Expression of hypoxia-inducible factor-1alpha, histone deacetylase 1, and metastasis-associated protein 1 in pancreatic carcinoma: correlation with poor prognosis with possible regulation. Pancreas, 36(3), e1–e9.

    Article  CAS  PubMed  Google Scholar 

  63. Hofer, M. D., Chang, M. C., Hirko, K. A., Rubin, M. A., & Nose, V. (2009). Immunohistochemical and clinicopathological correlation of the metastasis-associated gene 1 (MTA1) expression in benign and malignant pancreatic endocrine tumors. Modern Pathology, 22(7), 933–939.

    Article  CAS  PubMed  Google Scholar 

  64. Hamatsu, T., Rikimaru, T., Yamashita, Y., Aishima, S., Tanaka, S., Shirabe, K., et al. (2003). The role of MTA1 gene expression in human hepatocellular carcinoma. Oncology Reports, 10(3), 599–604.

    CAS  PubMed  Google Scholar 

  65. Moon, W. S., Chang, K., & Tarnawski, A. S. (2004). Overexpression of metastatic tumor antigen 1 in hepatocellular carcinoma: relationship to vascular invasion and estrogen receptor-alpha. Human Pathology, 35(4), 424–429.

    Article  CAS  PubMed  Google Scholar 

  66. Ryu, S. H., Chung, Y. H., Lee, H., Kim, J. A., Shin, H. D., Min, H. J., et al. (2008). Metastatic tumor antigen 1 is closely associated with frequent postoperative recurrence and poor survival in patients with hepatocellular carcinoma. Hepatology, 47(3), 929–936.

    Article  PubMed  Google Scholar 

  67. Lee, S. H., Chung, Y. H., Kim, J. A., Lee, D., Jin, Y. J., Shim, J. H., et al. (2012). Single nucleotide polymorphisms associated with metastatic tumour antigen 1 overexpression in patients with hepatocellular carcinoma. Liver International, 32(3), 457–466.

    CAS  PubMed  Google Scholar 

  68. Jin, Y. J., Chung, Y. H., Kim, J. A., Park, W. H., Lee, D., Seo, D. D., et al. (2012). Factors predisposing metastatic tumor antigen 1 overexpression in hepatitis B virus associated hepatocellular carcinoma. Digestive Diseases and Sciences, 57(11), 2917–2923.

    Article  CAS  PubMed  Google Scholar 

  69. Roepman, P., de Jager, A., Groot Koerkamp, M. J., Kummer, J. A., Slootweg, P. J., & Holstege, F. C. (2006). Maintenance of head and neck tumor gene expression profiles upon lymph node metastasis. Cancer Research, 66(23), 11110–11114.

    Article  CAS  PubMed  Google Scholar 

  70. Kawasaki, G., Yanamoto, S., Yoshitomi, I., Yamada, S., & Mizuno, A. (2008). Overexpression of metastasis-associated MTA1 in oral squamous cell carcinomas: correlation with metastasis and invasion. International Journal of Oral and Maxillofacical Surgery, 37(11), 1039–1046.

    Article  CAS  Google Scholar 

  71. Li, W. F., Liu, N., Cui, R. X., He, Q. M., Chen, M., Jiang, N., et al. (2012). Nuclear overexpression of metastasis-associated protein 1 correlates significantly with poor survival in nasopharyngeal carcinoma. Journal of Translational Medicine, 10, 78.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Deng, Y. F., Zhou, D. N., Ye, C. S., Zeng, L., & Yin, P. (2012). Aberrant expression levels of MTA1 and RECK in nasopharyngeal carcinoma: association with metastasis, recurrence, and prognosis. Annals of Otology, Rhinology and Laryngology, 121(7), 457–465.

    Article  Google Scholar 

  73. Park, J. O., Jung, C. K., Sun, D. I., Joo, Y. H., & Kim, M. S. (2011). Relationships between metastasis-associated protein (MTA) 1 and lymphatic metastasis in tonsil cancer. European Archives of Otorhinolaryngology, 268(9), 1329–1334.

    Article  PubMed  Google Scholar 

  74. Sasaki, H., Moriyama, S., Nakashima, Y., Kobayashi, Y., Yukiue, H., Kaji, M., et al. (2002). Expression of the MTA1 mRNA in advanced lung cancer. Lung Cancer, 35(2), 149–154.

    Article  PubMed  Google Scholar 

  75. Zhu, X., Guo, Y., Li, X., Ding, Y., & Chen, L. (2010). Metastasis-associated protein 1 nuclear expression is associated with tumor progression and clinical outcome in patients with non-small cell lung cancer. Journal of Thoracic Oncology, 5(8), 1159–1166.

    Article  PubMed  Google Scholar 

  76. Yu, Y., Wang, Z., Zhang, M. Y., Liu, X. Y., & Zhang, H. (2011). Relation between prognosis and expression of metastasis-associated protein 1 in stage I non-small cell lung cancer. Interactive Cardiovascular and Thoracic Surgery, 12(2), 166–169.

    Article  PubMed  Google Scholar 

  77. Li, S. H., Tian, H., Yue, W. M., Li, L., Li, W. J., Chen, Z. T., et al. (2011). Overexpression of metastasis-associated protein 1 is significantly correlated with tumor angiogenesis and poor survival in patients with early-stage non-small cell lung cancer. Annals of Surgical Oncology, 18(7), 2048–2056.

    Article  PubMed  Google Scholar 

  78. Sasaki, H., Yukiue, H., Kobayashi, Y., Nakashima, Y., Kaji, M., Fukai, I., et al. (2001). Expression of the MTA1 mRNA in thymoma patients. Cancer Letter, 174(2), 159–163.

    Article  CAS  Google Scholar 

  79. Yi, S., Guangqi, H., & Guoli, H. (2003). The association of the expression of MTA1, nm23H1 with the invasion, metastasis of ovarian carcinoma. Chinese Medical Sciences Journal, 18(2), 87–92.

    PubMed  Google Scholar 

  80. Dannenmann, C., Shabani, N., Friese, K., Jeschke, U., Mylonas, I., & Bruning, A. (2008). The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. Cancer Biology and Therapy, 7(9), 1460–1467.

    Article  CAS  PubMed  Google Scholar 

  81. Prisco, M. G., Zannoni, G. F., De Stefano, I., Vellone, V. G., Tortorella, L., Fagotti, A., et al. (2012). Prognostic role of metastasis tumor antigen 1 in patients with ovarian cancer: a clinical study. Human Pathology, 43(2), 282–288.

    Article  CAS  PubMed  Google Scholar 

  82. Liu, T., Yang, M., Yang, S., Ge, T., Gu, L., & Lou, G. (2013). Metastasis-associated protein 1 is a novel marker predicting survival and lymph nodes metastasis in cervical cancer. Human Pathology, 44(10), 2275–2281.

    Article  CAS  PubMed  Google Scholar 

  83. Hofer, M. D., Kuefer, R., Varambally, S., Li, H., Ma, J., Shapiro, G. I., et al. (2004). The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Research, 64(3), 825–829.

    Article  CAS  PubMed  Google Scholar 

  84. Dias, S. J., Zhou, X., Ivanovic, M., Gailey, M. P., Dhar, S., Zhang, L., et al. (2013). Nuclear MTA1 overexpression is associated with aggressive prostate cancer, recurrence and metastasis in African Americans. Scientific Reports, 3, 2331.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Hofer, M. D., Tapia, C., Browne, T. J., Mirlacher, M., Sauter, G., & Rubin, M. A. (2006). Comprehensive analysis of the expression of the metastasis-associated gene 1 in human neoplastic tissue. Archives of Pathology and Laboratory Medicine, 130(7), 989–996.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from members of the Department of Gastroenterological Surgery, National Kyushu Cancer Center, Japan, and foundation and private donations to the Institute for Molecular Medicine.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Toh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toh, Y., Nicolson, G.L. Properties and clinical relevance of MTA1 protein in human cancer. Cancer Metastasis Rev 33, 891–900 (2014). https://doi.org/10.1007/s10555-014-9516-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9516-2

Keywords

Navigation