Skip to main content

Advertisement

Log in

Mouse models of breast cancer metastasis to bone

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Breast cancer frequently metastasizes to bone, where it takes a significant toll on quality of life. Models of bone metastasis are needed in order to better understand the process of bone metastasis and to develop better treatments. Here, we discuss the available mouse models for breast cancer bone metastasis and critical techniques for imaging bone metastasis in these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Cancer Society. (2012). Cancer facts and figures 2012. Atlanta: American Cancer Society.

    Google Scholar 

  2. Colman, R. E. (2002). Future directions in the treatment and prevention of bone metastasis. American Journal of Clinical Oncology, 25, S32–S38.

    Article  Google Scholar 

  3. Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2, 584–593.

    Article  PubMed  CAS  Google Scholar 

  4. Deil, I. J., Solomayer, E. F., & Bastert, G. (2000). Treatment of metastatic bone disease in breast cancer, bisphophonates. Clinical Breast Cancer, 1, 43–51.

    Article  Google Scholar 

  5. Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., et al. (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell, 55, 619–625.

    Article  PubMed  CAS  Google Scholar 

  6. Guy, C. T., Webster, M. A., Schaller, M., et al. (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proceedings of the National Academy of Sciences of the United States of America, 89, 10578–10582.

    Article  PubMed  CAS  Google Scholar 

  7. Bouchard, L., Lamarre, L., Tremblay, P. T., et al. (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell, 57, 931–936.

    Article  PubMed  CAS  Google Scholar 

  8. Muller, W. J., Sinn, E., Pattengale, P. K., et al. (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell, 54, 105–115.

    Article  PubMed  CAS  Google Scholar 

  9. Nielsen, L. L., Discafani, C. M., Gurnan, M., et al. (1991). Histopathology of salivary and mammary gland tumors in transgenic mice expressing a human Ha-ras oncogene. Cancer Research, 51, 3762–3767.

    PubMed  CAS  Google Scholar 

  10. Sinn, E., Muller, W., Pattengale, P., et al. (1987). Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell, 49, 465–475.

    Article  PubMed  CAS  Google Scholar 

  11. Goldstein, R. H., Weinberg, R. A., & Rosenblatt, M. (2010). Of mice and (wo)men: mouse models of breast cancer metastasis to bone. Journal of Bone and Mineral Research, 25, 431–436.

    Article  PubMed  Google Scholar 

  12. Guy, C. T., Cardiff, R. D., & Muller, W. J. (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12, 954–961.

    PubMed  CAS  Google Scholar 

  13. Ichaso, N., & Dilworth, S. M. (2001). Cell transformation by the middle T-antigen of polyoma virus. Oncogene, 20, 7908–7916.

    Article  PubMed  CAS  Google Scholar 

  14. Lin, E. Y., Jones, J. G., Li, P., et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. American Journal of Pathology, 163, 2113–2126.

    Article  PubMed  Google Scholar 

  15. Fluck, M. M., & Haslam, S. Z. (1996). Mammary tumors induced by polyomavirus. Breast Cancer Research and Treatment, 39, 45–56.

    Article  PubMed  CAS  Google Scholar 

  16. Welm, A. L., Sneddon, J. B., Taylor, C., et al. (2007). The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans. Proceedings of the National Academy of Sciences of the United States of America, 104, 7570–7575.

    Article  PubMed  CAS  Google Scholar 

  17. Kang, Y., Siegel, P. M., Shu, W., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3, 537–549.

    Article  PubMed  CAS  Google Scholar 

  18. Garcia, T., Jackson, A., Bachelier, R., et al. (2008). A convenient clinically relevant model of human breast cancer to bone metastasis. Clinical & Experimental Metastasis, 25, 33–42.

    Article  CAS  Google Scholar 

  19. Tavazoie, S. F., Alarcon, C., Oskarsson, T., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451, 147–152.

    Article  PubMed  CAS  Google Scholar 

  20. Minn, A. J., Gupta, G. P., Siegel, P. M., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436, 518–524.

    Article  PubMed  CAS  Google Scholar 

  21. Bos, P. D., Zhang, X. H., Nadal, C., et al. (2009). Genes that mediate breast cancer metastasis to brain. Nature, 459, 1005–1009.

    Article  PubMed  CAS  Google Scholar 

  22. Kakiuchi, S., Daigo, Y., Tsunoda, T., et al. (2003). Genome-wide analysis of organ-preferential metastasis of human small cell lung cancer in mice. Molecular Cancer Research, 1, 485–499.

    PubMed  CAS  Google Scholar 

  23. Juarez, P., & Guise, T. A. (2011). TGF-β in cancer and bone: implications for treatment of bone metastasis. Bone, 48, 23–29.

    Article  PubMed  CAS  Google Scholar 

  24. Mundy, G. R., Yoneda, T., & Hiraga, T. (2001). Preclinical studies with zoledronic acid and other bisphosphonates: impact on the bone microenvironment. Seminars in Oncology, 28(2 Suppl 6), 35–44.

    Article  PubMed  CAS  Google Scholar 

  25. Canon, J. R., Roudier, M., Bryant, R., et al. (2008). Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clinical & Experimental Metastasis, 25, 119–129.

    Article  CAS  Google Scholar 

  26. Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147, 275–292.

    Article  PubMed  CAS  Google Scholar 

  27. Lelekakis, M., Moseley, J. M., Martin, T. J., et al. (1999). A novel orthotopic model of breast cancer metastasis to bone. Clinical & Experimental Metastasis, 17, 163–170.

    Article  CAS  Google Scholar 

  28. Miller, F. R., Miller, B. E., & Heppner, G. H. (1983). Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor:heterogeneity in phenotypic stability. Invasion and Metastasis, 3, 22–31.

    CAS  Google Scholar 

  29. DeNardo, D. G., & Coussens, L. M. (2007). Inflammation and breast cancer-balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Research, 9, 212.

    Article  PubMed  Google Scholar 

  30. Kuperwasser, C., Chavarria, T., Wu, M., et al. (2004). Reconstitution of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 4966–4972.

    Article  PubMed  CAS  Google Scholar 

  31. Kuperwasser, C., Dessain, S., Bierbaum, B. E., et al. (2005). A mouse model of human breast cancer metastasis to human bone. Cancer Research, 65, 6130–6138.

    Article  PubMed  CAS  Google Scholar 

  32. Moreau, J. E., Anderson, K., Mauney, J. R., et al. (2007). Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Research, 67, 10304–10308.

    Article  PubMed  CAS  Google Scholar 

  33. DeRose, Y. S., Wang, G., Lin, Y. C., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine, 17, 1514–1520.

    Article  PubMed  CAS  Google Scholar 

  34. Weissleder, R., Tung, C. H., Mahmood, U., et al. (1999). In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology, 17, 375–378.

    Article  PubMed  CAS  Google Scholar 

  35. Henriquez, N. V., van Overveld, P. G., Que, I., et al. (2007). Advances in optical imaging and novel systems for cancer metastasis research. Clinical & Experimental Metastasis, 24, 699–705.

    Article  Google Scholar 

  36. Serganova, I., Moroz, E., Vider, J., et al. (2009). Multimodality imaging of TGFbeta signaling in breast cancer metastases. The FASEB Journal, 23, 2662–2672.

    Article  CAS  Google Scholar 

  37. Korpal, M., Yan, J., Lu, X., et al. (2009). Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis. Nature Medicine, 15(8), 960–966.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alana L. Welm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretschmann, K.L., Welm, A.L. Mouse models of breast cancer metastasis to bone. Cancer Metastasis Rev 31, 579–583 (2012). https://doi.org/10.1007/s10555-012-9378-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9378-4

Keywords

Navigation