Skip to main content

Advertisement

Log in

Improving cancer immunotherapy by targeting tumor-induced immune suppression

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The status of a host’s immune response influences both the development and progression of a malignancy such that immune responses can have both pro- and anti-tumorigenic effects. Cancer immunotherapy is a form of treatment that aims to improve the ability of a cancer-bearing individual to reject the tumor immunologically. However, antitumor immunity elicited by the host or by immunotherapeutic strategies, can be actively attenuated by mechanisms that limit the strength and/or duration of immune responses, including the presence of immunoregulatory cell types or the production of immunosuppressive factors. As our knowledge of tumor-induced immune suppression increases, it has become obvious that these mechanisms are probably a major barrier to effective therapy. The identification of multiple mechanisms of tumor-induced immune suppression also provides a range of novel targets for new cancer therapies. Given the vital role that a host’s immune response is known to play in cancer progression, therapies that target immune suppressive mechanisms have the potential to enhance anticancer immune responses thus leading to better immune surveillance and the limitation of tumor escape. In this review, mechanisms of tumor-associated immune suppression have been divided into four forms that we have designated as (1) regulatory cells; (2) cytokines/chemokines; (3) T cell tolerance/exhaustion and (4) metabolic. We discuss select mechanisms representing each of these forms of immunosuppression that have been shown to aid tumors in evading host immune surveillance and overview therapeutic strategies that have been recently devised to “suppress these suppressors.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stewart, T. J., Greeneltch, K. M., Lutsiak, M. E., & Abrams, S. I. (2007). Immunological responses can have both pro- and antitumour effects: implications for immunotherapy. Expert Reviews in Molecular Medicine, 9(4), 1–20. doi:10.1017/S1462399407000233.

    PubMed  Google Scholar 

  2. Hamai, A., Benlalam, H., Meslin, F., Hasmim, M., Carre, T., Akalay, I., et al. Immune surveillance of human cancer: If the cytotoxic t-lymphocytes play the music, does the tumoral system call the tune? Tissue Antigens, 75(1), 1–8, doi:10.1111/j.1399-0039.2009.01401.x.

  3. Knutson, K. L., & Disis, M. L. (2005). Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunology, Immunotherapy, 54(8), 721–728.

    PubMed  CAS  Google Scholar 

  4. Bindea, G., Mlecnik, B., Fridman, W. H., Pages, F., & Galon, J. Natural immunity to cancer in humans. Current Opinion in Immunology, 22(2), 215–222, doi:10.1016/j.coi.2010.02.006.

  5. Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 21(2), 137–148.

    PubMed  CAS  Google Scholar 

  6. Swann, J. B., & Smyth, M. J. (2007). Immune surveillance of tumors. Journal of Clinical Investigation, 117(5), 1137–1146. doi:10.1172/JCI31405.

    PubMed  CAS  Google Scholar 

  7. Ferrone, S., & Whiteside, T. L. (2007). Tumor microenvironment and immune escape. Surgical Oncology Clinics of North America, 16(4), 755–774, viii, doi:10.1016/j.soc.2007.08.004.

    Google Scholar 

  8. Stewart, T. J., & Abrams, S. I. (2008). How tumours escape mass destruction. Oncogene, 27(45), 5894–5903. doi:10.1038/onc.2008.268.

    PubMed  CAS  Google Scholar 

  9. Weiner, L. M., Surana, R., & Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Reviews. Immunology, 10(5), 317–327, doi:10.1038/nri2744.

  10. Kapp, M., Rasche, L., Einsele, H., & Grigoleit, G. U. (2009). Cellular therapy to control tumor progression. Current Opinion in Hematology, 16(6), 437–443. doi:10.1097/MOH.0b013e32832f57d4.

    PubMed  Google Scholar 

  11. Rosenberg, S. A., & Dudley, M. E. (2009). Adoptive cell therapy for the treatment of patients with metastatic melanoma. Current Opinion in Immunology, 21(2), 233–240. doi:10.1016/j.coi.2009.03.002.

    PubMed  CAS  Google Scholar 

  12. Huye, L. E., & Dotti, G. Designing t cells for cancer immunotherapy. Discov Med, 9(47), 297–303.

  13. Westwood, J. A., & Kershaw, M. H. Genetic redirection of t cells for cancer therapy. Journal of Leukocyte Biology, 87(5), 791–803, doi:10.1189/jlb.1209824.

  14. Spagnoli, G. C., Ebrahimi, M., Iezzi, G., Mengus, C., & Zajac, P. Contemporary immunotherapy of solid tumors: From tumor-associated antigens to combination treatments. Current Opinion in Drug Discovery & Development, 13(2), 184–192.

  15. Romagnani, S., Maggi, E., Liotta, F., Cosmi, L., & Annunziato, F. (2009). Properties and origin of human th17 cells. Molecular Immunology, 47(1), 3–7. doi:10.1016/j.molimm.2008.12.019.

    PubMed  CAS  Google Scholar 

  16. Mougiakakos, D., Choudhury, A., Lladser, A., Kiessling, R., & Johansson, C. C. Regulatory t cells in cancer. Advances in Cancer Research, 107, 57–117, doi:10.1016/S0065-230X(10)07003-X.

  17. Nishikawa, H., & Sakaguchi, S. Regulatory t cells in tumor immunity. International Journal of Cancer, 127(4), 759–767, doi:10.1002/ijc.25429.

  18. Teng, M. W., Ritchie, D. S., Neeson, P., & Smyth, M. J. Biology and clinical observations of regulatory t cells in cancer immunology. Current topics in Microbiology and Immunology, doi:10.1007/82_2010_50.

  19. Serafini, P., Borrello, I., & Bronte, V. (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 16(1), 53–65.

    PubMed  CAS  Google Scholar 

  20. Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2008). The yin-yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunological Reviews, 222, 155–161. doi:10.1111/j.1600-065X.2008.00607.x.

    PubMed  CAS  Google Scholar 

  21. Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 9(3), 162–174. doi:10.1038/nri2506.

    PubMed  CAS  Google Scholar 

  22. Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P., & Bronte, V. (2008). Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunological Reviews, 222, 162–179. doi:10.1111/j.1600-065X.2008.00602.x.

    PubMed  CAS  Google Scholar 

  23. Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689.

    CAS  Google Scholar 

  24. Diaz-Montero, C. M., Salem, M. L., Nishimura, M. I., Garrett-Mayer, E., Cole, D. J., & Montero, A. J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58(1), 49–59. doi:10.1007/s00262-008-0523-4.

    PubMed  CAS  Google Scholar 

  25. Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. Journal of Clinical Investigation, 117(5), 1155–1166. doi:10.1172/JCI31422.

    PubMed  CAS  Google Scholar 

  26. Young, M. R., Kolesiak, K., Wright, M. A., & Gabrilovich, D. I. (1999). Chemoattraction of femoral cd34+ progenitor cells by tumor-derived vascular endothelial cell growth factor. Clinical & Experimental Metastasis, 17(10), 881–888.

    CAS  Google Scholar 

  27. Zea, A. H., Rodriguez, P. C., Atkins, M. B., Hernandez, C., Signoretti, S., Zabaleta, J., et al. (2005). Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Research, 65(8), 3044–3048. doi:10.1158/0008-5472.CAN-04-4505.

    PubMed  CAS  Google Scholar 

  28. Filipazzi, P., Valenti, R., Huber, V., Pilla, L., Canese, P., Iero, M., et al. (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. Journal of Clinical Oncology, 25(18), 2546–2553. doi:10.1200/JCO.2006.08.5829.

    PubMed  CAS  Google Scholar 

  29. Hoechst, B., Ormandy, L. A., Ballmaier, M., Lehner, F., Kruger, C., Manns, M. P., et al. (2008). A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces cd4(+)cd25(+)foxp3(+) T cells. Gastroenterology, 135(1), 234–243. doi:10.1053/j.gastro.2008.03.020.

    PubMed  CAS  Google Scholar 

  30. Danna, E. A., Sinha, P., Gilbert, M., Clements, V. K., Pulaski, B. A., & Ostrand-Rosenberg, S. (2004). Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease. Cancer Research, 64(6), 2205–2211.

    PubMed  CAS  Google Scholar 

  31. Serafini, P., De Santo, C., Marigo, I., Cingarlini, S., Dolcetti, L., Gallina, G., et al. (2004). Derangement of immune responses by myeloid suppressor cells. Cancer Immunology, Immunotherapy, 53(2), 64–72.

    PubMed  CAS  Google Scholar 

  32. de Waal Malefyt, R., Yssel, H., & de Vries, J. E. (1993). Direct effects of il-10 on subsets of human cd4+ t cell clones and resting t cells. Specific inhibition of il-2 production and proliferation. Journal of Immunology, 150(11), 4754–4765.

  33. Koch, F., Stanzl, U., Jennewein, P., Janke, K., Heufler, C., Kampgen, E., et al. (1996). High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. The Journal of Experimental Medicine, 184(2), 741–746.

    PubMed  CAS  Google Scholar 

  34. Moore, K. W., de Waal Malefyt, R., Coffman, R. L., & O’Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology, 19, 683–765. doi:10.1146/annurev.immunol.19.1.683.

    PubMed  CAS  Google Scholar 

  35. Bronte, V., Wang, M., Overwijk, W. W., Surman, D. R., Pericle, F., Rosenberg, S. A., et al. (1998). Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. Journal of Immunology, 161(10), 5313–5320.

    CAS  Google Scholar 

  36. Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 116(10), 2777–2790.

    PubMed  CAS  Google Scholar 

  37. Zea, A. H., Rodriguez, P. C., Culotta, K. S., Hernandez, C. P., DeSalvo, J., Ochoa, J. B., et al. (2004). l-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cellular Immunology, 232(1–2), 21–31.

    PubMed  CAS  Google Scholar 

  38. De Santo, C., Serafini, P., Marigo, I., Dolcetti, L., Bolla, M., Del Soldato, P., et al. (2005). Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proceedings of the National Academy of Sciences of the United States of America, 102(11), 4185–4190.

    PubMed  Google Scholar 

  39. Pekarek, L. A., Starr, B. A., Toledano, A. Y., & Schreiber, H. (1995). Inhibition of tumor growth by elimination of granulocytes. The Journal of Experimental Medicine, 181(1), 435–440.

    PubMed  CAS  Google Scholar 

  40. Stewart, T. J., Liewehr, D. J., Steinberg, S. M., Greeneltch, K. M., & Abrams, S. I. (2009). Modulating the expression of IFN regulatory factor 8 alters the protumorigenic behavior of CD11b+Gr-1+ myeloid cells. Journal of Immunology, 183(1), 117–128. doi:10.4049/jimmunol.0804132.

    CAS  Google Scholar 

  41. Stewart, T. J., Greeneltch, K. M., Reid, J. E., Liewehr, D. J., Steinberg, S. M., Liu, K., et al. (2009). Interferon regulatory factor-8 modulates the development of tumour-induced CD11B+Gr-1+ myeloid cells. Journal of Cellular and Molecular Medicine, 13(9B), 3939–3950. doi:10.1111/j.1582-4934.2009.00685.x.

    PubMed  Google Scholar 

  42. Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., et al. (2005). Inhibiting stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Natural Medicines, 11(12), 1314–1321. doi:10.1038/nm1325.

    CAS  Google Scholar 

  43. Nefedova, Y., Nagaraj, S., Rosenbauer, A., Muro-Cacho, C., Sebti, S. M., & Gabrilovich, D. I. (2005). Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Research, 65(20), 9525–9535.

    PubMed  CAS  Google Scholar 

  44. Sinha, P., Clements, V. K., & Ostrand-Rosenberg, S. (2005). Reduction of myeloid-derived suppressor cells and induction of m1 macrophages facilitate the rejection of established metastatic disease. Journal of Immunology, 174(2), 636–645.

    CAS  Google Scholar 

  45. Kusmartsev, S., Cheng, F., Yu, B., Nefedova, Y., Sotomayor, E., Lush, R., et al. (2003). All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Research, 63(15), 4441–4449.

    PubMed  CAS  Google Scholar 

  46. Young, M. R., Lozano, Y., Ihm, J., Wright, M. A., & Prechel, M. M. (1996). Vitamin D3 treatment of tumor bearers can stimulate immune competence and reduce tumor growth when treatment coincides with a heightened presence of natural suppressor cells. Cancer Letters, 104(2), 153–161.

    PubMed  CAS  Google Scholar 

  47. Young, M. R., & Wright, M. A. (1992). Myelopoiesis-associated immune suppressor cells in mice bearing metastatic Lewis lung carcinoma tumors: gamma interferon plus tumor necrosis factor alpha synergistically reduces immune suppressor and tumor growth-promoting activities of bone marrow cells and diminishes tumor recurrence and metastasis. Cancer Research, 52(22), 6335–6340.

    PubMed  CAS  Google Scholar 

  48. Mirza, N., Fishman, M., Fricke, I., Dunn, M., Neuger, A. M., Frost, T. J., et al. (2006). All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Research, 66(18), 9299–9307. doi:10.1158/0008-5472.CAN-06-1690.

    PubMed  CAS  Google Scholar 

  49. Ko, J. S., Rayman, P., Ireland, J., Swaidani, S., Li, G., Bunting, K. D., et al. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Research, 70(9), 3526–3536, doi:10.1158/0008-5472.CAN-09-3278.

  50. Le, H. K., Graham, L., Cha, E., Morales, J. K., Manjili, M. H., & Bear, H. D. (2009). Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. International Immunopharmacology, 9(7–8), 900–909. doi:10.1016/j.intimp.2009.03.015.

    PubMed  CAS  Google Scholar 

  51. Ozao-Choy, J., Ma, G., Kao, J., Wang, G. X., Meseck, M., Sung, M., et al. (2009). The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Research, 69(6), 2514–2522. doi:10.1158/0008-5472.CAN-08-4709.

    PubMed  CAS  Google Scholar 

  52. Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R., & Albelda, S. M. (2005). Gemcitabine selectively eliminates splenic Gr-1+/CD11b+myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clinical Cancer Research, 11(18), 6713–6721.

    PubMed  CAS  Google Scholar 

  53. Vincent, J., Mignot, G., Chalmin, F., Ladoire, S., Bruchard, M., Chevriaux, A., et al. 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced t cell-dependent antitumor immunity. Cancer Research, 70(8), 3052–3061, doi:10.1158/0008-5472.CAN-09-3690.

  54. Ko, J. S., Zea, A. H., Rini, B. I., Ireland, J. L., Elson, P., Cohen, P., et al. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clinical Cancer Research, 15(6), 2148–2157. doi:10.1158/1078-0432.CCR-08-1332.

    PubMed  CAS  Google Scholar 

  55. Fridlender, Z. G., Sun, J., Singhal, S., Kapoor, V., Cheng, G., Suzuki, E., et al. Chemotherapy delivered after viral immunogene therapy augments antitumor efficacy via multiple immune-mediated mechanisms. Molecular Therapy, doi:10.1038/mt.2010.159.

  56. Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J., & Baxter, A. G. (2000). NKT cells: facts, functions and fallacies. Immunology Today, 21(11), 573–583.

    PubMed  CAS  Google Scholar 

  57. Godfrey, D. I., Stankovic, S., & Baxter, A. G. (2010). Raising the NKT cell family. Nature Immunology, 11(3), 197–206. doi:10.1038/ni.1841.

    PubMed  CAS  Google Scholar 

  58. Smyth, M. J., Crowe, N. Y., Hayakawa, Y., Takeda, K., Yagita, H., & Godfrey, D. I. (2002). NKT cells—conductors of tumor immunity? Current Opinion in Immunology, 14(2), 165–171.

    PubMed  CAS  Google Scholar 

  59. Smyth, M. J., & Godfrey, D. I. (2000). NKT cells and tumor immunity—a double-edged sword. Nature Immunology, 1(6), 459–460. doi:10.1038/82698.

    PubMed  CAS  Google Scholar 

  60. Cerundolo, V., Silk, J. D., Masri, S. H., & Salio, M. (2009). Harnessing invariant NKT cells in vaccination strategies. Nature Reviews. Immunology, 9(1), 28–38. doi:10.1038/nri2451.

    PubMed  CAS  Google Scholar 

  61. Smyth, M. J., Crowe, N. Y., Pellicci, D. G., Kyparissoudis, K., Kelly, J. M., Takeda, K., et al. (2002). Sequential production of interferon-gamma by nk1.1(+) t cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood, 99(4), 1259–1266.

    Google Scholar 

  62. Ambrosino, E., Terabe, M., Halder, R. C., Peng, J., Takaku, S., Miyake, S., et al. (2007). Cross-regulation between type I and type II nkt cells in regulating tumor immunity: a new immunoregulatory axis. Journal of Immunology, 179(8), 5126–5136.

    CAS  Google Scholar 

  63. Moodycliffe, A. M., Nghiem, D., Clydesdale, G., & Ullrich, S. E. (2000). Immune suppression and skin cancer development: regulation by NKT cells. Nature Immunology, 1(6), 521–525. doi:10.1038/82782.

    PubMed  CAS  Google Scholar 

  64. Terabe, M., Khanna, C., Bose, S., Melchionda, F., Mendoza, A., Mackall, C. L., et al. (2006). Cd1d-restricted natural killer t cells can down-regulate tumor immunosurveillance independent of interleukin-4 receptor-signal transducer and activator of transcription 6 or transforming growth factor-beta. Cancer Research, 66(7), 3869–3875.

    PubMed  CAS  Google Scholar 

  65. Terabe, M., Matsui, S., Noben-Trauth, N., Chen, H., Watson, C., Donaldson, D. D., et al. (2000). NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunology, 1(6), 515–520.

    PubMed  CAS  Google Scholar 

  66. Terabe, M., Swann, J., Ambrosino, E., Sinha, P., Takaku, S., Hayakawa, Y., et al. (2005). A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. The Journal of Experimental Medicine, 202(12), 1627–1633.

    PubMed  CAS  Google Scholar 

  67. Park, J. M., Terabe, M., Donaldson, D. D., Forni, G., & Berzofsky, J. A. (2008). Natural immunosurveillance against spontaneous, autochthonous breast cancers revealed and enhanced by blockade of IL-13-mediated negative regulation. Cancer Immunology, Immunotherapy, 57(6), 907–912. doi:10.1007/s00262-007-0414-0.

    PubMed  CAS  Google Scholar 

  68. Terabe, M., Matsui, S., Park, J. M., Mamura, M., Noben-Trauth, N., Donaldson, D. D., et al. (2003). Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted t cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. The Journal of Experimental Medicine, 198(11), 1741–1752.

    PubMed  CAS  Google Scholar 

  69. Terabe, M., Park, J. M., & Berzofsky, J. A. (2004). Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunology, Immunotherapy, 53(2), 79–85.

    PubMed  CAS  Google Scholar 

  70. Parmiani, G., Rivoltini, L., Andreola, G., & Carrabba, M. (2000). Cytokines in cancer therapy. Immunology Letters, 74(1), 41–44.

    PubMed  CAS  Google Scholar 

  71. Stewart, T. J., & Smyth, M. J. (2009). Chemokine–chemokine receptors in cancer immunotherapy. Immunotherapy, 1(1), 109–127. doi:10.2217/1750743X.1.1.109.

    PubMed  CAS  Google Scholar 

  72. Gorelik, L., & Flavell, R. A. (2002). Transforming growth factor-beta in T-cell biology. Nature Reviews. Immunology, 2(1), 46–53. doi:10.1038/nri704.

    PubMed  CAS  Google Scholar 

  73. Letterio, J. J., & Roberts, A. B. (1998). Regulation of immune responses by TGF-beta. Annual Review of Immunology, 16, 137–161. doi:10.1146/annurev.immunol.16.1.137.

    PubMed  CAS  Google Scholar 

  74. Li, M. O., & Flavell, R. A. (2008). TGF-beta: a master of all T cell trades. Cell, 134(3), 392–404. doi:10.1016/j.cell.2008.07.025.

    PubMed  CAS  Google Scholar 

  75. Borkowski, T. A., Letterio, J. J., Farr, A. G., & Udey, M. C. (1996). A role for endogenous transforming growth factor beta 1 in langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal langerhans cells. The Journal of Experimental Medicine, 184(6), 2417–2422.

    PubMed  CAS  Google Scholar 

  76. Geissmann, F., Revy, P., Regnault, A., Lepelletier, Y., Dy, M., Brousse, N., et al. (1999). TGF-beta 1 prevents the noncognate maturation of human dendritic langerhans cells. Journal of Immunology, 162(8), 4567–4575.

    CAS  Google Scholar 

  77. Bierie, B., & Moses, H. L. (2006). Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nature Reviews. Cancer, 6(7), 506–520. doi:10.1038/nrc1926.

    PubMed  CAS  Google Scholar 

  78. Takaku, S., Terabe, M., Ambrosino, E., Peng, J., Lonning, S., McPherson, J. M., et al. Blockade of tgf-beta enhances tumor vaccine efficacy mediated by cd8(+) t cells. International Journal of Cancer, 126(7), 1666–1674, doi:10.1002/ijc.24961.

  79. Terabe, M., Ambrosino, E., Takaku, S., O’Konek, J. J., Venzon, D., Lonning, S., et al. (2009). Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-beta monoclonal antibody. Clinical Cancer Research, 15(21), 6560–6569. doi:10.1158/1078-0432.CCR-09-1066.

    PubMed  CAS  Google Scholar 

  80. Ueda, R., Fujita, M., Zhu, X., Sasaki, K., Kastenhuber, E. R., Kohanbash, G., et al. (2009). Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clinical Cancer Research, 15(21), 6551–6559. doi:10.1158/1078-0432.CCR-09-1067.

    PubMed  CAS  Google Scholar 

  81. Nagaraj, N. S., & Datta, P. K. Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opinion on Investigational Drugs, 19(1), 77-91, doi:10.1517/13543780903382609.

  82. Uhl, M., Aulwurm, S., Wischhusen, J., Weiler, M., Ma, J. Y., Almirez, R., et al. (2004). SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Research, 64(21), 7954–7961. doi:10.1158/0008-5472.CAN-04-1013.

    PubMed  CAS  Google Scholar 

  83. Hau, P., Jachimczak, P., & Bogdahn, U. (2009). Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Review of Anticancer Therapy, 9(11), 1663–1674. doi:10.1586/era.09.138.

    PubMed  CAS  Google Scholar 

  84. Hau, P., Jachimczak, P., Schlingensiepen, R., Schulmeyer, F., Jauch, T., Steinbrecher, A., et al. (2007). Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides, 17(2), 201–212. doi:10.1089/oli.2006.0053.

    PubMed  CAS  Google Scholar 

  85. Nemunaitis, J., Nemunaitis, M., Senzer, N., Snitz, P., Bedell, C., Kumar, P., et al. (2009). Phase II trial of Belagenpumatucel-l, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Therapy, 16(8), 620–624. doi:10.1038/cgt.2009.15.

    PubMed  CAS  Google Scholar 

  86. Vicari, A. P., & Trinchieri, G. (2004). Interleukin-10 in viral diseases and cancer: exiting the labyrinth? Immunological Reviews, 202, 223–236. doi:10.1111/j.0105-2896.2004.00216.x.

    PubMed  CAS  Google Scholar 

  87. Bagri, A., Kouros-Mehr, H., Leong, K. G., & Plowman, G. D. Use of anti-vegf adjuvant therapy in cancer: Challenges and rationale. Trends in Molecular Medicine, 16(3), 122–132, doi:10.1016/j.molmed.2010.01.004.

  88. Johnson, B., Osada, T., Clay, T., Lyerly, H., & Morse, M. (2009). Physiology and therapeutics of vascular endothelial growth factor in tumor immunosuppression. Current Molecular Medicine, 9(6), 702–707.

    PubMed  CAS  Google Scholar 

  89. Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E., & Carbone, D. P. (1999). Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clinical Cancer Research, 5(10), 2963–2970.

    PubMed  CAS  Google Scholar 

  90. Alfaro, C., Suarez, N., Gonzalez, A., Solano, S., Erro, L., Dubrot, J., et al. (2009). Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. British Journal of Cancer, 100(7), 1111–1119. doi:10.1038/sj.bjc.6604965.

    PubMed  CAS  Google Scholar 

  91. Li, B., Lalani, A. S., Harding, T. C., Luan, B., Koprivnikar, K., Huan Tu, G., et al. (2006). Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clinical Cancer Research, 12(22), 6808–6816. doi:10.1158/1078-0432.CCR-06-1558.

    PubMed  CAS  Google Scholar 

  92. Osada, T., Chong, G., Tansik, R., Hong, T., Spector, N., Kumar, R., et al. (2008). The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunology, Immunotherapy, 57(8), 1115–1124. doi:10.1007/s00262-007-0441-x.

    PubMed  CAS  Google Scholar 

  93. Rini, B. I., Weinberg, V., Fong, L., Conry, S., Hershberg, R. M., & Small, E. J. (2006). Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer, 107(1), 67–74. doi:10.1002/cncr.21956.

    PubMed  CAS  Google Scholar 

  94. Conti, I., & Rollins, B. J. (2004). CCL2 (monocyte chemoattractant protein-1) and cancer. Seminars in Cancer Biology, 14(3), 149–154.

    PubMed  CAS  Google Scholar 

  95. Hasegawa, H., Inoue, A., Muraoka, M., Yamanouchi, J., Miyazaki, T., & Yasukawa, M. (2007). Therapy for pneumonitis and sialadenitis by accumulation of CCR2-expressing CD4+CD25+ regulatory T cells in MRL/lpr mice. Arthritis Research & Therapy, 9(1), R15. doi:10.1186/ar2122.

    Google Scholar 

  96. Hu, K., Xiong, J., Ji, K., Sun, H., Wang, J., & Liu, H. (2007). Recombined CC chemokine ligand 2 into B16 cells induces production of th2-dominant [correction of dominanted] cytokines and inhibits melanoma metastasis. Immunology Letters, 113(1), 19–28. doi:10.1016/j.imlet.2007.07.004.

    PubMed  CAS  Google Scholar 

  97. Peng, L., Shu, S., & Krauss, J. C. (1997). Monocyte chemoattractant protein inhibits the generation of tumor-reactive t cells. Cancer Research, 57(21), 4849–4854.

    PubMed  CAS  Google Scholar 

  98. Ueno, T., Toi, M., Saji, H., Muta, M., Bando, H., Kuroi, K., et al. (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical Cancer Research, 6(8), 3282–3289.

    PubMed  CAS  Google Scholar 

  99. Jordan, J. T., Sun, W., Hussain, S. F., DeAngulo, G., Prabhu, S. S., & Heimberger, A. B. (2008). Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunology, Immunotherapy, 57(1), 123–131. doi:10.1007/s00262-007-0336-x.

    PubMed  CAS  Google Scholar 

  100. Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4(1), 71–78. doi:10.1038/nrc1256nrc1256.

    PubMed  CAS  Google Scholar 

  101. Loberg, R. D., Ying, C., Craig, M., Day, L. L., Sargent, E., Neeley, C., et al. (2007). Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Research, 67(19), 9417–9424.

    PubMed  CAS  Google Scholar 

  102. Loberg, R. D., Ying, C., Craig, M., Yan, L., Snyder, L. A., & Pienta, K. J. (2007). CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia, 9(7), 556–562.

    PubMed  CAS  Google Scholar 

  103. Fridlender, Z. G., Buchlis, G., Kapoor, V., Cheng, G., Sun, J., Singhal, S., et al. Ccl2 blockade augments cancer immunotherapy. Cancer Research, 70(1), 109–118, doi:10.1158/0008-5472.CAN-09-2326.

  104. Li, J. H., Rosen, D., Sondel, P., & Berke, G. (2002). Immune privilege and FasL: two ways to inactivate effector cytotoxic t lymphocytes by FasL-expressing cells. Immunology, 105(3), 267–277.

    PubMed  CAS  Google Scholar 

  105. Schwartz, R. H. (2003). T cell anergy. Annual Review of Immunology, 21, 305–334. doi:10.1146/annurev.immunol.21.120601.141110.

    PubMed  CAS  Google Scholar 

  106. Greiner, J. W., Zeytin, H., Anver, M. R., & Schlom, J. (2002). Vaccine-based therapy directed against carcinoembryonic antigen demonstrates antitumor activity on spontaneous intestinal tumors in the absence of autoimmunity. Cancer Research, 62(23), 6944–6951.

    PubMed  CAS  Google Scholar 

  107. Eder, J. P., Kantoff, P. W., Roper, K., Xu, G. X., Bubley, G. J., Boyden, J., et al. (2000). A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clinical Cancer Research, 6(5), 1632–1638.

    PubMed  CAS  Google Scholar 

  108. Marshall, J. L., Gulley, J. L., Arlen, P. M., Beetham, P. K., Tsang, K. Y., Slack, R., et al. (2005). Phase i study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. Journal of Clinical Oncology, 23(4), 720–731. doi:10.1200/JCO.2005.10.206.

    PubMed  CAS  Google Scholar 

  109. Frey, A. B., & Monu, N. (2008). Signaling defects in anti-tumor T cells. Immunological Reviews, 222, 192–205. doi:10.1111/j.1600-065X.2008.00606.x.

    PubMed  CAS  Google Scholar 

  110. Whiteside, T. L. Immune responses to malignancies. Journal of Allergy and Clinical Immunology, 125(2 Suppl 2), S272–S283, doi:10.1016/j.jaci.2009.09.045.

  111. Egen, J. G., Kuhns, M. S., & Allison, J. P. (2002). CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature Immunology, 3(7), 611–618.

    PubMed  CAS  Google Scholar 

  112. Boasso, A., Herbeuval, J. P., Hardy, A. W., Winkler, C., & Shearer, G. M. (2005). Regulation of indoleamine 2, 3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells. Blood, 105(4), 1574–1581. doi:10.1182/blood-2004-06-2089.

    PubMed  CAS  Google Scholar 

  113. Mangsbo, S. M., Sandin, L. C., Anger, K., Korman, A. J., Loskog, A., & Totterman, T. H. Enhanced tumor eradication by combining ctla-4 or pd-1 blockade with cpg therapy. Journal of Immunotherapy, 33(3), 225–235, doi:10.1097/CJI.0b013e3181c01fcb.

  114. Takeda, K., Kojima, Y., Uno, T., Hayakawa, Y., Teng, M. W., Yoshizawa, H., et al. Combination therapy of established tumors by antibodies targeting immune activating and suppressing molecules. Journal of Immunology, 184(10), 5493–5501, doi:10.4049/jimmunol.0903033.

  115. Sarnaik, A. A., & Weber, J. S. (2009). Recent advances using anti-CTLA-4 for the treatment of melanoma. Cancer Journal, 15(3), 169–173. doi:10.1097/PPO.0b013e3181a7450f.

    CAS  Google Scholar 

  116. Agarwala, S. S. Novel immunotherapies as potential therapeutic partners for traditional or targeted agents: Cytotoxic t-lymphocyte antigen-4 blockade in advanced melanoma. Melanoma Research, 20(1), 1–10, doi:10.1097/CMR.0b013e328333bbc8.

  117. Page, D. B., Yuan, J., & Wolchok, J. D. Targeting cytotoxic t-lymphocyte antigen 4 in immunotherapies for melanoma and other cancers. Immunotherapy, 2(3), 367–379, doi:10.2217/imt.10.21.

  118. Weber, J. S. (2006). The clinical utility of cytotoxic T lymphocyte antigen 4 abrogation by human antibodies. Melanoma Research, 16(5), 379–383. doi:10.1097/01.cmr.0000232292.06785.a3.

    PubMed  CAS  Google Scholar 

  119. Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Natural Medicines, 8(8), 793–800.

    CAS  Google Scholar 

  120. Fourcade, J., Kudela, P., Sun, Z., Shen, H., Land, S. R., Lenzner, D., et al. (2009). PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. Journal of Immunology, 182(9), 5240–5249. doi:10.4049/jimmunol.0803245.

    CAS  Google Scholar 

  121. Matsuzaki, J., Gnjatic, S., Mhawech-Fauceglia, P., Beck, A., Miller, A., Tsuji, T., et al. Tumor-infiltrating ny-eso-1-specific cd8+ t cells are negatively regulated by lag-3 and pd-1 in human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7875–7880, doi:10.1073/pnas.1003345107.

  122. Fourcade, J., Sun, Z., Benallaoua, M., Guillaume, P., Luescher, I. F., Sander, C., et al. Upregulation of tim-3 and pd-1 expression is associated with tumor antigen-specific cd8+ t cell dysfunction in melanoma patients. Journal of Experimental Medicine, doi:10.1084/jem.20100637.

  123. Ichikawa, M., & Chen, L. (2005). Role of B7-H1 and B7-H4 molecules in down-regulating effector phase of T-cell immunity: novel cancer escaping mechanisms. Frontiers in Bioscience, 10, 2856–2860.

    PubMed  CAS  Google Scholar 

  124. Wang, W., Lau, R., Yu, D., Zhu, W., Korman, A., & Weber, J. (2009). PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(hi) regulatory t cells. International Immunology, 21(9), 1065–1077. doi:10.1093/intimm/dxp072.

    PubMed  CAS  Google Scholar 

  125. Curiel, T. J., Wei, S., Dong, H., Alvarez, X., Cheng, P., Mottram, P., et al. (2003). Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Natural Medicines, 9(5), 562–567. doi:10.1038/nm863.

    CAS  Google Scholar 

  126. Brahmer, J. R., Drake, C. G., Wollner, I., Powderly, J. D., Picus, J., Sharfman, W. H., et al. Phase i study of single-agent anti-programmed death-1 (mdx-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. Journal of Clinical Oncology, 28(19), 3167–3175, doi:10.1200/JCO.2009.26.7609.

  127. Li, P., Yin, Y. L., Li, D., Kim, S. W., & Wu, G. (2007). Amino acids and immune function. The British Journal of Nutrition, 98(2), 237–252. doi:10.1017/S000711450769936X.

    PubMed  CAS  Google Scholar 

  128. Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by l-arginine metabolism. Nature Reviews. Immunology, 5(8), 641–654.

    PubMed  CAS  Google Scholar 

  129. Mocellin, S., Bronte, V., & Nitti, D. (2007). Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Medicinal Research Reviews, 27(3), 317–352. doi:10.1002/med.20092.

    PubMed  CAS  Google Scholar 

  130. Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64(16), 5839–5849.

    PubMed  CAS  Google Scholar 

  131. Bronte, V., Kasic, T., Gri, G., Gallana, K., Borsellino, G., Marigo, I., et al. (2005). Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. The Journal of Experimental Medicine, 201(8), 1257–1268.

    PubMed  CAS  Google Scholar 

  132. Stagg, J., & Smyth, M. J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene, doi:10.1038/onc.2010.292.

  133. Mandapathil, M., Hilldorfer, B., Szczepanski, M. J., Czystowska, M., Szajnik, M., Ren, J., et al. Generation and accumulation of immunosuppressive adenosine by human cd4+cd25highfoxp3+ regulatory t cells. Journal of Biological Chemistry, 285(10), 7176–7186, doi:10.1074/jbc.M109.047423.

  134. Jin, D., Fan, J., Wang, L., Thompson, L. F., Liu, A., Daniel, B. J., et al. Cd73 on tumor cells impairs antitumor t-cell responses: A novel mechanism of tumor-induced immune suppression. Cancer Research, 70(6), 2245–2255, doi:10.1158/0008-5472.CAN-09-3109.

  135. Takedachi, M., Qu, D., Ebisuno, Y., Oohara, H., Joachims, M. L., McGee, S. T., et al. (2008). CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. Journal of Immunology, 180(9), 6288–6296.

    CAS  Google Scholar 

  136. Stagg, J., Divisekera, U., McLaughlin, N., Sharkey, J., Pommey, S., Denoyer, D., et al. Anti-cd73 antibody therapy inhibits breast tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 107(4), 1547–1552, doi:10.1073/pnas.0908801107.

  137. Uyttenhove, C., Pilotte, L., Theate, I., Stroobant, V., Colau, D., Parmentier, N., et al. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Natural Medicines, 9(10), 1269–1274. doi:10.1038/nm934nm934.

    CAS  Google Scholar 

  138. Liu, X., Newton, R. C., Friedman, S. M., & Scherle, P. A. (2009). Indoleamine 2, 3-dioxygenase, an emerging target for anti-cancer therapy. Current Cancer Drug Targets, 9(8), 938–952.

    PubMed  CAS  Google Scholar 

  139. Lob, S., Konigsrainer, A., Rammensee, H. G., Opelz, G., & Terness, P. (2009). Inhibitors of indoleamine-2, 3-dioxygenase for cancer therapy: can we see the wood for the trees? Nature Reviews. Cancer, 9(6), 445–452. doi:10.1038/nrc2639.

    PubMed  Google Scholar 

  140. Munn, D. H., Zhou, M., Attwood, J. T., Bondarev, I., Conway, S. J., Marshall, B., et al. (1998). Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, 281(5380), 1191–1193.

    PubMed  CAS  Google Scholar 

  141. Grohmann, U., Orabona, C., Fallarino, F., Vacca, C., Calcinaro, F., Falorni, A., et al. (2002). CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunology, 3(11), 1097–1101. doi:10.1038/ni846ni846.

    PubMed  CAS  Google Scholar 

  142. Munn, D. H., Sharma, M. D., Hou, D., Baban, B., Lee, J. R., Antonia, S. J., et al. (2004). Expression of indoleamine 2, 3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. Journal of Clinical Investigation, 114(2), 280–290. doi:10.1172/JCI21583.

    PubMed  CAS  Google Scholar 

  143. Munn, D. H., & Mellor, A. L. (2007). Indoleamine 2, 3-dioxygenase and tumor-induced tolerance. Journal of Clinical Investigation, 117(5), 1147–1154. doi:10.1172/JCI31178.

    PubMed  CAS  Google Scholar 

  144. Muller, A. J., & Prendergast, G. C. (2007). Indoleamine 2, 3-dioxygenase in immune suppression and cancer. Current Cancer Drug Targets, 7(1), 31–40.

    PubMed  CAS  Google Scholar 

  145. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E., & Prendergast, G. C. (2005). Inhibition of indoleamine 2, 3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Natural Medicines, 11(3), 312–319. doi:10.1038/nm1196.

    CAS  Google Scholar 

  146. Wang, M. T., Honn, K. V., & Nie, D. (2007). Cyclooxygenases, prostanoids, and tumor progression. Cancer and Metastasis Reviews, 26(3–4), 525–534. doi:10.1007/s10555-007-9096-5.

    PubMed  CAS  Google Scholar 

  147. Gasparini, G., Longo, R., Sarmiento, R., & Morabito, A. (2003). Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? The Lancet Oncology, 4(10), 605–615.

    PubMed  CAS  Google Scholar 

  148. Sarkar, F. H., Adsule, S., Li, Y., & Padhye, S. (2007). Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem, 7(6), 599–608.

    PubMed  CAS  Google Scholar 

  149. Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(3), 377–386. doi:10.1093/carcin/bgp014.

    PubMed  CAS  Google Scholar 

  150. Harris, S. G., Padilla, J., Koumas, L., Ray, D., & Phipps, R. P. (2002). Prostaglandins as modulators of immunity. Trends in Immunology, 23(3), 144–150.

    PubMed  CAS  Google Scholar 

  151. Pockaj, B. A., Basu, G. D., Pathangey, L. B., Gray, R. J., Hernandez, J. L., Gendler, S. J., et al. (2004). Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Annals of Surgical Oncology, 11(3), 328–339.

    PubMed  Google Scholar 

  152. Sharma, S., Yang, S. C., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., et al. (2005). Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Research, 65(12), 5211–5220. doi:10.1158/0008-5472.CAN-05-0141.

    PubMed  CAS  Google Scholar 

  153. Stolina, M., Sharma, S., Lin, Y., Dohadwala, M., Gardner, B., Luo, J., et al. (2000). Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. Journal of Immunology, 164(1), 361–370.

    CAS  Google Scholar 

  154. Basu, G. D., Tinder, T. L., Bradley, J. M., Tu, T., Hattrup, C. L., Pockaj, B. A., et al. (2006). Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. Journal of Immunology, 177(4), 2391–2402.

    CAS  Google Scholar 

  155. Zeytin, H. E., Patel, A. C., Rogers, C. J., Canter, D., Hursting, S. D., Schlom, J., et al. (2004). Combination of a poxvirus-based vaccine with a cyclooxygenase-2 inhibitor (celecoxib) elicits antitumor immunity and long-term survival in cea.Tg/min mice. Cancer Research, 64(10), 3668–3678, doi:10.1158/0008-5472.CAN-03-3878.

  156. Csiki, I., Morrow, J. D., Sandler, A., Shyr, Y., Oates, J., Williams, M. K., et al. (2005). Targeting cyclooxygenase-2 in recurrent non-small cell lung cancer: a phase ii trial of celecoxib and docetaxel. Clinical Cancer Research, 11(18), 6634–6640. doi:10.1158/1078-0432.CCR-05-0436.

    PubMed  CAS  Google Scholar 

  157. Ferrari, V., Valcamonico, F., Amoroso, V., Simoncini, E., Vassalli, L., Marpicati, P., et al. (2006). Gemcitabine plus celecoxib (GECO) in advanced pancreatic cancer: a phase ii trial. Cancer Chemotherapy and Pharmacology, 57(2), 185–190. doi:10.1007/s00280-005-0028-1.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank their funding partners who include the National Breast Cancer Foundation, Cancer Council of Victoria, The Victorian Breast Cancer Research Consortium, The Susan G. Komen Breast Cancer Foundation, and the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trina J. Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, T.J., Smyth, M.J. Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev 30, 125–140 (2011). https://doi.org/10.1007/s10555-011-9280-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9280-5

Keywords

Navigation