Skip to main content

Advertisement

Log in

Bone marrow-derived mesenchymal stem cells and the tumor microenvironment

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Over the last decade, there has been a growing interest in the role of mesenchymal stem cells (MSC) in cancer progression. These cells have the potential to give rise to a variety of mesenchymal cells like osteoblasts, chondrocytes, adipocytes, fibroblasts, and muscle cells. In contrast to their hematopoetic counterparts, MSC are not as clearly defined, which makes the interpretation of their role in cancer progression more complex. However, the nature of the relationship between MSC and tumor cells appears dual. Primary and metastatic tumors attract MSC in their microenvironment where they become tumor-associated fibroblasts, affect tumor cell survival and angiogenesis, and have an immunomodulatory function, and vice versa in the bone marrow MSC attract tumor cells and contribute to a microenvironment that promotes osteolysis, tumor growth, survival, and drug resistance. Whether MSC are pro- or anti-tumorigenic is a subject of controversial reports that is in part explained by the complexity of their interaction with tumor cells and the large range of cytokines and growth factors they produce. The study of these interactions is a fertile ground of investigation that—as already demonstrated in the case of myeloma—should lead to novel therapeutic approaches in cancer. In this article, the biology and role of MSC in cancer is reviewed with a primary focus on bone marrow-derived MSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Prockop, D. J. (2009). Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Molecular Therapy, 17, 939–946.

    Article  PubMed  CAS  Google Scholar 

  2. Caplan, A. I. (1994). The mesengenic process. Clinics in Plastic Surgery, 21, 429–435.

    PubMed  CAS  Google Scholar 

  3. Valtieri, M., & Sorrentino, A. (2008). The mesenchymal stromal cell contribution to homeostasis. Journal of Cellular Physiology, 217, 296–300.

    Article  PubMed  CAS  Google Scholar 

  4. Dennis, J. E., & Charbord, P. (2002). Origin and differentiation of human and murine stroma. Stem Cells, 20, 205–214.

    Article  PubMed  CAS  Google Scholar 

  5. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  6. Civin, C. I., Trischmann, T., Kadan, N. S., Davis, J., Noga, S., Cohen, K., et al. (1996). Highly purified CD34-positive cells reconstitute hematopoiesis. Journal of Clinical Oncology, 14, 2224–2233.

    PubMed  CAS  Google Scholar 

  7. Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18, 696–704.

    Article  PubMed  Google Scholar 

  8. Wagner, W., & Ho, A. D. (2007). Mesenchymal stem cell preparations—comparing apples and oranges. Stem Cell Reviews and Reports, 3, 239–248.

    Article  PubMed  Google Scholar 

  9. Vaananen, H. K. (2005). Mesenchymal stem cells. Annals of Medicine, 37, 469–479.

    Article  PubMed  CAS  Google Scholar 

  10. Friedenstein, A. J., Piatetzky-Shapiro, I. I., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology, 16, 381–390.

    PubMed  CAS  Google Scholar 

  11. Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F., & Keiliss-Borok, I. V. (1974). Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 17, 331–340.

    Article  PubMed  CAS  Google Scholar 

  12. Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., et al. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7, 393–395.

    Article  PubMed  CAS  Google Scholar 

  13. Wagner, W., Feldmann, R. E., Jr., Seckinger, A., Maurer, M. H., Wein, F., Blake, J., et al. (2006). The heterogeneity of human mesenchymal stem cell preparations—evidence from simultaneous analysis of proteomes and transcriptomes. Experimental Hematology, 34, 536–548.

    Article  PubMed  CAS  Google Scholar 

  14. Lodie, T. A., Blickarz, C. E., Devarakonda, T. J., He, C., Dash, A. B., Clarke, J., et al. (2002). Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Engineering, 8, 739–751.

    Article  PubMed  CAS  Google Scholar 

  15. Tropel, P., Noel, D., Platet, N., Legrand, P., Benabid, A. L., & Berger, F. (2004). Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Experimental Cell Research, 295, 395–406.

    Article  PubMed  CAS  Google Scholar 

  16. Colter, D. C., Sekiya, I., & Prockop, D. J. (2001). Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 7841–7845.

    Article  PubMed  CAS  Google Scholar 

  17. Battula, V. L., Treml, S., Bareiss, P. M., Gieseke, F., Roelofs, H., de Zwart, P., et al. (2009). Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica, 94, 173–184.

    Article  PubMed  CAS  Google Scholar 

  18. Kaiser, S., Hackanson, B., Follo, M., Mehlhorn, A., Geiger, K., Ihorst, G., et al. (2007). BM cells giving rise to MSC in culture have a heterogeneous CD34 and CD45 phenotype. Cytotherapy, 9, 439–450.

    Article  PubMed  CAS  Google Scholar 

  19. Copland, I., Sharma, K., Lejeune, L., Eliopoulos, N., Stewart, D., Liu, P., et al. (2008). CD34 expression on murine marrow-derived mesenchymal stromal cells: impact on neovascularization. Experimental Hematology, 36, 93–103.

    Article  PubMed  CAS  Google Scholar 

  20. Conget, P. A., & Minguell, J. J. (1999). Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. Journal of Cellular Physiology, 181, 67–73.

    Article  PubMed  CAS  Google Scholar 

  21. Roche, S., Delorme, B., Oostendorp, R. A., Barbet, R., Caton, D., Noel, D., et al. (2009). Comparative proteomic analysis of human mesenchymal and embryonic stem cells: towards the definition of a mesenchymal stem cell proteomic signature. Proteomics, 9, 223–232.

    Article  PubMed  CAS  Google Scholar 

  22. Kemp, K. C., Hows, J., & Donaldson, C. (2005). Bone marrow-derived mesenchymal stem cells. Leukaemia & Lymphoma, 46, 1531–1544.

    Article  Google Scholar 

  23. Simmons, P. J., & Torok-Storb, B. (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 78, 55–62.

    PubMed  CAS  Google Scholar 

  24. Jones, E., & McGonagle, D. (2008). Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford), 47, 126–131.

    Article  CAS  Google Scholar 

  25. Rider, D. A., Nalathamby, T., Nurcombe, V., & Cool, S. M. (2007). Selection using the alpha-1 integrin (CD49a) enhances the multipotentiality of the mesenchymal stem cell population from heterogeneous bone marrow stromal cells. Journal of Molecular Histology, 38, 449–458.

    Article  PubMed  CAS  Google Scholar 

  26. Stewart, K., Monk, P., Walsh, S., Jefferiss, C. M., Letchford, J., & Beresford, J. N. (2003). STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell and Tissue Research, 313, 281–290.

    Article  PubMed  CAS  Google Scholar 

  27. Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276, 71–74.

    Article  PubMed  CAS  Google Scholar 

  28. Izadpanah, R., Trygg, C., Patel, B., Kriedt, C., Dufour, J., Gimble, J. M., et al. (2006). Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 99, 1285–1297.

    Article  PubMed  CAS  Google Scholar 

  29. Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., & Perlingeiro, R. C. (2007). SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood, 109, 1743–1751.

    Article  PubMed  CAS  Google Scholar 

  30. Mackay, A. M., Beck, S. C., Murphy, J. M., Barry, F. P., Chichester, C. O., & Pittenger, M. F. (1998). Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Engineering, 4, 415–428.

    Article  PubMed  CAS  Google Scholar 

  31. Denker, A. E., Haas, A. R., Nicoll, S. B., & Tuan, R. S. (1999). Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation, 64, 67–76.

    Article  PubMed  CAS  Google Scholar 

  32. Goessler, U. R., Bieback, K., Bugert, P., Heller, T., Sadick, H., Hormann, K., et al. (2006). In vitro analysis of integrin expression during chondrogenic differentiation of mesenchymal stem cells and chondrocytes upon dedifferentiation in cell culture. International Journal of Molecular Medicine, 17, 301–307.

    PubMed  CAS  Google Scholar 

  33. Menicanin, D., Bartold, P. M., Zannettino, A. C., & Gronthos, S. (2009). Genomic profiling of mesenchymal stem cells. Stem Cell Reviews and Reports, 5, 36–50.

    Article  PubMed  CAS  Google Scholar 

  34. Rich, J. T., Rosova, I., Nolta, J. A., Myckatyn, T. M., Sandell, L. J., & McAlinden, A. (2008). Upregulation of Runx2 and Osterix during in vitro chondrogenesis of human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 372, 230–235.

    Article  PubMed  CAS  Google Scholar 

  35. Sekiya, I., Larson, B. L., Vuoristo, J. T., Cui, J. G., & Prockop, D. J. (2004). Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). Journal of Bone and Mineral Research, 19, 256–264.

    Article  PubMed  CAS  Google Scholar 

  36. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 6, 483–495.

    Article  PubMed  CAS  Google Scholar 

  37. Schilling, T., Noth, U., Klein-Hitpass, L., Jakob, F., & Schutze, N. (2007). Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Molecular and Cellular Endocrinology, 271, 1–17.

    Article  PubMed  CAS  Google Scholar 

  38. Akavia, U. D., Veinblat, O., & Benayahu, D. (2008). Comparing the transcriptional profile of mesenchymal cells to cardiac and skeletal muscle cells. Journal of Cellular Physiology, 216, 663–672.

    Article  PubMed  CAS  Google Scholar 

  39. Park, J. S., Chu, J. S., Cheng, C., Chen, F., Chen, D., & Li, S. (2004). Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnology and Bioengineering, 88, 359–368.

    Article  PubMed  CAS  Google Scholar 

  40. Ball, S. G., Shuttleworth, C. A., & Kielty, C. M. (2007). Platelet-derived growth factor receptor-alpha is a key determinant of smooth muscle alpha-actin filaments in bone marrow-derived mesenchymal stem cells. International Journal of Biochemistry and Cell Biology, 39, 379–391.

    Article  PubMed  CAS  Google Scholar 

  41. Wang, E. A., Israel, D. I., Kelly, S., & Luxenberg, D. P. (1993). Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3 T3 cells. Growth Factors, 9, 57–71.

    Article  PubMed  CAS  Google Scholar 

  42. Chen, D., Ji, X., Harris, M. A., Feng, J. Q., Karsenty, G., Celeste, A. J., et al. (1998). Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. Developments in Cell Biology, 142, 295–305.

    CAS  Google Scholar 

  43. Liu, Z., Tang, Y., Qiu, T., Cao, X., & Clemens, T. L. (2006). A dishevelled-1/Smad1 interaction couples WNT and bone morphogenetic protein signaling pathways in uncommitted bone marrow stromal cells. Journal of Biological Chemistry, 281, 17156–17163.

    Article  PubMed  CAS  Google Scholar 

  44. Locklin, R. M., Oreffo, R. O., & Triffitt, J. T. (1999). Effects of TGFbeta and bFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biology International, 23, 185–194.

    Article  PubMed  CAS  Google Scholar 

  45. Jian, H., Shen, X., Liu, I., Semenov, M., He, X., & Wang, X. F. (2006). Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes and Development, 20, 666–674.

    Article  PubMed  CAS  Google Scholar 

  46. Maeda, S., Hayashi, M., Komiya, S., Imamura, T., & Miyazono, K. (2004). Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO Journal, 23, 552–563.

    Article  PubMed  CAS  Google Scholar 

  47. Roelen, B. A., & Dijke, P. (2003). Controlling mesenchymal stem cell differentiation by TGFBeta family members. Journal of Orthopaedic Science, 8, 740–748.

    Article  PubMed  Google Scholar 

  48. Gazit, D., Zilberman, Y., Turgeman, G., Zhou, S., & Kahn, A. (1999). Recombinant TGF-beta1 stimulates bone marrow osteoprogenitor cell activity and bone matrix synthesis in osteopenic, old male mice. Journal of Cellular Biochemistry, 73, 379–389.

    Article  PubMed  CAS  Google Scholar 

  49. Walsh, S., Jefferiss, C., Stewart, K., & Beresford, J. N. (2003). TGFbeta1 limits the expansion of the osteoprogenitor fraction in cultures of human bone marrow stromal cells. Cell and Tissue Research, 311, 187–198.

    PubMed  CAS  Google Scholar 

  50. Ling, L., Nurcombe, V., & Cool, S. M. (2009). Wnt signaling controls the fate of mesenchymal stem cells. Gene, 433, 1–7.

    Article  PubMed  CAS  Google Scholar 

  51. Boland, G. M., Perkins, G., Hall, D. J., & Tuan, R. S. (2004). Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. Journal of Cellular Biochemistry, 93, 1210–1230.

    Article  PubMed  CAS  Google Scholar 

  52. Baksh, D., Boland, G. M., & Tuan, R. S. (2007). Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. Journal of Cellular Biochemistry, 101, 1109–1124.

    Article  PubMed  CAS  Google Scholar 

  53. De Boer, J., Wang, H. J., & Van Blitterswijk, C. (2004). Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Engineering, 10, 393–401.

    Article  PubMed  CAS  Google Scholar 

  54. Eijken, M., Meijer, I. M., Westbroek, I., Koedam, M., Chiba, H., Uitterlinden, A. G., et al. (2008). Wnt signaling acts and is regulated in a human osteoblast differentiation dependent manner. Journal of Cellular Biochemistry, 104, 568–579.

    Article  PubMed  CAS  Google Scholar 

  55. Lee, H., Herrmann, A., Deng, J. H., Kujawski, M., Niu, G., Li, Z., et al. (2009). Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell, 15, 283–293.

    Article  PubMed  CAS  Google Scholar 

  56. Hartmann, C., & Tabin, C. J. (2000). Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development, 127, 3141–3159.

    PubMed  CAS  Google Scholar 

  57. Bergwitz, C., Wendlandt, T., Kispert, A., & Brabant, G. (2001). Wnts differentially regulate colony growth and differentiation of chondrogenic rat calvaria cells. Biochimica et Biophysica Acta, 1538, 129–140.

    PubMed  CAS  Google Scholar 

  58. Tuli, R., Tuli, S., Nandi, S., Huang, X., Manner, P. A., Hozack, W. J., et al. (2003). Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. Journal of Biological Chemistry, 278, 41227–41236.

    Article  PubMed  CAS  Google Scholar 

  59. Ridgeway, A. G., Petropoulos, H., Wilton, S., & Skerjanc, I. S. (2000). Wnt signaling regulates the function of MyoD and myogenin. Journal of Biological Chemistry, 275, 32398–32405.

    Article  PubMed  CAS  Google Scholar 

  60. Suzawa, M., Takada, I., Yanagisawa, J., Ohtake, F., Ogawa, S., Yamauchi, T., et al. (2003). Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nature Cell Biology, 5, 224–230.

    Article  PubMed  CAS  Google Scholar 

  61. Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells, 25, 2896–2902.

    Article  PubMed  Google Scholar 

  62. Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L., & Verfaillie, C. M. (2001). Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 98, 2615–2625.

    Article  PubMed  CAS  Google Scholar 

  63. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.

    Article  PubMed  CAS  Google Scholar 

  64. Shiota, M., Heike, T., Haruyama, M., Baba, S., Tsuchiya, A., Fujino, H., et al. (2007). Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Experimental Cell Research, 313, 1008–1023.

    Article  PubMed  CAS  Google Scholar 

  65. Hall, B., Andreeff, M., & Marini, F. (2007). The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handbook of Experimental Pharmacology, 263-283.

  66. Wu, X., Hu, J., Zhou, L., Mao, Y., Yang, B., Gao, L., et al. (2008). In vivo tracking of superparamagnetic iron oxide nanoparticle-labeled mesenchymal stem cell tropism to malignant gliomas using magnetic resonance imaging. Laboratory investigation. Journal of Neurosurgery, 108, 320–329.

    Article  PubMed  Google Scholar 

  67. Hung, S. C., Deng, W. P., Yang, W. K., Liu, R. S., Lee, C. C., Su, T. C., et al. (2005). Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clinical Cancer Research, 11, 7749–7756.

    Article  PubMed  CAS  Google Scholar 

  68. Kidd, S., Spaeth, E., Dembinski, J. L., Dietrich, M., Watson, K., Klopp, A., et al. (2009). Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells, 27, 2614–2623.

    Article  PubMed  CAS  Google Scholar 

  69. Ishii, G., Sangai, T., Oda, T., Aoyagi, Y., Hasebe, T., Kanomata, N., et al. (2003). Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochemical and Biophysical Research Communications, 309, 232–240.

    Article  PubMed  CAS  Google Scholar 

  70. Direkze, N. C., Hodivala-Dilke, K., Jeffery, R., Hunt, T., Poulsom, R., Oukrif, D., et al. (2004). Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Research, 64, 8492–8495.

    Article  PubMed  CAS  Google Scholar 

  71. Schichor, C., Birnbaum, T., Etminan, N., Schnell, O., Grau, S., Miebach, S., et al. (2006). Vascular endothelial growth factor a contributes to glioma-induced migration of human marrow stromal cells (hMSC). Experimental Neurology, 199, 301–310.

    Article  PubMed  CAS  Google Scholar 

  72. Birnbaum, T., Roider, J., Schankin, C. J., Padovan, C. S., Schichor, C., Goldbrunner, R., et al. (2007). Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. Journal of Neuro-Oncology, 83, 241–247.

    Article  PubMed  CAS  Google Scholar 

  73. Feng, B., & Chen, L. (2009). Review of mesenchymal stem cells and tumors: executioner or coconspirator? Cancer Biotherapy & Radiopharmaceuticals, 24, 717–721.

    Article  CAS  Google Scholar 

  74. Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M., & Marini, F. (2008). Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Therapy, 15, 730–738.

    Article  PubMed  CAS  Google Scholar 

  75. Dwyer, R. M., Potter-Beirne, S. M., Harrington, K. A., Lowery, A. J., Hennessy, E., Murphy, J. M., et al. (2007). Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clinical Cancer Research, 13, 5020–5027.

    Article  PubMed  CAS  Google Scholar 

  76. Xu, W. T., Bian, Z. Y., Fan, Q. M., Li, G., & Tang, T. T. (2009). Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Letters, 281, 32–41.

    Article  PubMed  CAS  Google Scholar 

  77. Hara, M., Murakami, T., & Kobayashi, E. (2008). In vivo bioimaging using photogenic rats: fate of injected bone marrow-derived mesenchymal stromal cells. Journal of Autoimmunity, 30, 163–171.

    Article  PubMed  Google Scholar 

  78. Wynn, R. F., Hart, C. A., Corradi-Perini, C., O'Neill, L., Evans, C. A., Wraith, J. E., et al. (2004). A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104, 2643–2645.

    Article  PubMed  CAS  Google Scholar 

  79. Gutova, M., Najbauer, J., Frank, R. T., Kendall, S. E., Gevorgyan, A., Metz, M. Z., et al. (2008). Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells, 26, 1406–1413.

    Article  PubMed  CAS  Google Scholar 

  80. Ho, I. A., Chan, K. Y., Ng, W. H., Guo, C. M., Hui, K. M., Cheang, P., et al. (2009). Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells, 27, 1366–1375.

    Article  PubMed  CAS  Google Scholar 

  81. Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New England Journal of Medicine, 315, 1650–1659.

    PubMed  CAS  Google Scholar 

  82. Kidd, S., Spaeth, E., Klopp, A., Andreeff, M., Hall, B., & Marini, F. C. (2008). The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy, 10, 657–667.

    Article  PubMed  CAS  Google Scholar 

  83. Spaeth, E. L., Dembinski, J. L., Sasser, A. K., Watson, K., Klopp, A., Hall, B., et al. (2009). Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE, 4, e4992.

    Article  PubMed  CAS  Google Scholar 

  84. Mishra, P. J., Mishra, P. J., Humeniuk, R., Medina, D. J., Alexe, G., Mesirov, J. P., et al. (2008). Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Research, 68, 4331–4339.

    Article  PubMed  CAS  Google Scholar 

  85. Coffelt, S. B., Marini, F. C., Watson, K., Zwezdaryk, K. J., Dembinski, J. L., LaMarca, H. L., et al. (2009). The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 3806–3811.

    Article  PubMed  Google Scholar 

  86. Khakoo, A. Y., Pati, S., Anderson, S. A., Reid, W., Elshal, M. F., Rovira, I. I., et al. (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. Journal of Experimental Medicine, 203, 1235–1247.

    Article  PubMed  CAS  Google Scholar 

  87. Soria, G., & Ben Baruch, A. (2008). The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Letters, 267, 271–285.

    Article  PubMed  CAS  Google Scholar 

  88. Zhu, W., Xu, W., Jiang, R., Qian, H., Chen, M., Hu, J., et al. (2006). Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Experimental and Molecular Pathology, 80, 267–274.

    Article  PubMed  CAS  Google Scholar 

  89. Wang, H., Cao, F., De, A., Cao, Y., Contag, C., Gambhir, S. S., et al. (2009). Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells, 27, 1548–1558.

    Article  PubMed  CAS  Google Scholar 

  90. Galie, M., Konstantinidou, G., Peroni, D., Scambi, I., Marchini, C., Lisi, V., et al. (2008). Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice. Oncogene, 27, 2542–2551.

    Article  PubMed  CAS  Google Scholar 

  91. Tabe, Y., Konopleva, M., Munsell, M. F., Marini, F. C., Zompetta, C., McQueen, T., et al. (2004). PML-RARalpha is associated with leptin-receptor induction: the role of mesenchymal stem cell-derived adipocytes in APL cell survival. Blood, 103, 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  92. Lanza, C., Morando, S., Voci, A., Canesi, L., Principato, M. C., Serpero, L. D., et al. (2009). Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. Journal of Neurochemistry, 110, 1674–1684.

    Article  PubMed  CAS  Google Scholar 

  93. Sun, B., Roh, K. H., Park, J. R., Lee, S. R., Park, S. B., Jung, J. W., et al. (2009). Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy, 11(289–98), 1.

    Google Scholar 

  94. Lu, Y. R., Yuan, Y., Wang, X. J., Wei, L. L., Chen, Y. N., Cong, C., et al. (2008). The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biology & Therapy, 7, 245–251.

    CAS  Google Scholar 

  95. Wang, Y., Crisostomo, P. R., Wang, M., Markel, T. A., Novotny, N. M., & Meldrum, D. R. (2008). TGF-alpha increases human mesenchymal stem cell-secreted VEGF by MEK- and PI3-K- but not JNK- or ERK-dependent mechanisms. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295, R1115–R1123.

    PubMed  CAS  Google Scholar 

  96. Lee, D. C., Fenton, S. E., Berkowitz, E. A., & Hissong, M. A. (1995). Transforming growth factor alpha: expression, regulation, and biological activities. Pharmacological Reviews, 47, 51–85.

    PubMed  CAS  Google Scholar 

  97. Beckermann, B. M., Kallifatidis, G., Groth, A., Frommhold, D., Apel, A., Mattern, J., et al. (2008). VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. British Journal of Cancer, 99, 622–631.

    Article  PubMed  CAS  Google Scholar 

  98. Rajantie, I., Ilmonen, M., Alminaite, A., Ozerdem, U., Alitalo, K., & Salven, P. (2004). Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood, 104, 2084–2086.

    Article  PubMed  CAS  Google Scholar 

  99. Al Khaldi, A., Eliopoulos, N., Martineau, D., Lejeune, L., Lachapelle, K., & Galipeau, J. (2003). Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Therapy, 10, 621–629.

    Article  PubMed  CAS  Google Scholar 

  100. Otsu, K., Das, S., Houser, S. D., Quadri, S. K., Bhattacharya, S., & Bhattacharya, J. (2009). Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood, 113, 4197–4205.

    Article  PubMed  CAS  Google Scholar 

  101. Sotiropoulou, P. A., & Papamichail, M. (2007). Immune properties of mesenchymal stem cells. Methods in Molecular Biology, 407, 225–243.

    Article  PubMed  CAS  Google Scholar 

  102. Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.

    Article  PubMed  Google Scholar 

  103. Plumas, J., Chaperot, L., Richard, M. J., Molens, J. P., Bensa, J. C., & Favrot, M. C. (2005). Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia, 19, 1597–1604.

    Article  PubMed  CAS  Google Scholar 

  104. Rutella, S., Danese, S., & Leone, G. (2006). Tolerogenic dendritic cells: cytokine modulation comes of age. Blood, 108, 1435–1440.

    Article  PubMed  CAS  Google Scholar 

  105. Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.

    Article  PubMed  CAS  Google Scholar 

  106. Prevosto, C., Zancolli, M., Canevali, P., Zocchi, M. R., & Poggi, A. (2007). Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell–lymphocyte interaction. Haematologica, 92, 881–888.

    Article  PubMed  CAS  Google Scholar 

  107. Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., et al. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102, 3837–3844.

    Article  PubMed  CAS  Google Scholar 

  108. Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110, 3499–3506.

    Article  PubMed  CAS  Google Scholar 

  109. Koc, O. N., Gerson, S. L., Cooper, B. W., Dyhouse, S. M., Haynesworth, S. E., Caplan, A. I., et al. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18, 307–316.

    PubMed  CAS  Google Scholar 

  110. Lazarus, H. M., Koc, O. N., Devine, S. M., Curtin, P., Maziarz, R. T., Holland, H. K., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11, 389–398.

    Article  PubMed  Google Scholar 

  111. Ning, H., Yang, F., Jiang, M., Hu, L., Feng, K., Zhang, J., et al. (2008). The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia, 22, 593–599.

    Article  PubMed  CAS  Google Scholar 

  112. Loebinger, M. R., Kyrtatos, P. G., Turmaine, M., Price, A. N., Pankhurst, Q., Lythgoe, M. F., et al. (2009). Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Research, 69, 8862–8867.

    Article  PubMed  CAS  Google Scholar 

  113. Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449, 557–563.

    Article  PubMed  CAS  Google Scholar 

  114. Burger, J. A., & Kipps, T. J. (2002). Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leukaemia & Lymphoma, 43, 461–466.

    Article  CAS  Google Scholar 

  115. Molloy, A. P., Martin, F. T., Dwyer, R. M., Griffin, T. P., Murphy, M., Barry, F. P., et al. (2009). Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. International Journal of Cancer, 124, 326–332.

    Article  CAS  Google Scholar 

  116. Urashima, M., Chen, B. P., Chen, S., Pinkus, G. S., Bronson, R. T., Dedera, D. A., et al. (1997). The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood, 90, 754–765.

    PubMed  CAS  Google Scholar 

  117. Cook, G., Dumbar, M., & Franklin, I. M. (1997). The role of adhesion molecules in multiple myeloma. Acta Haematologica, 97, 81–89.

    Article  PubMed  CAS  Google Scholar 

  118. Uchiyama, H., Barut, B. A., Chauhan, D., Cannistra, S. A., & Anderson, K. C. (1992). Characterization of adhesion molecules on human myeloma cell lines. Blood, 80, 2306–2314.

    PubMed  CAS  Google Scholar 

  119. Faid, L., Van, R. I., De Waele, M., Facon, T., Schots, R., Lacor, P., et al. (1996). Adhesive interactions between tumour cells and bone marrow stromal elements in human multiple myeloma. European Journal of Haematology, 57, 349–358.

    Article  PubMed  CAS  Google Scholar 

  120. Thomas, X., Anglaret, B., Magaud, J. P., Epstein, J., & Archimbaud, E. (1998). Interdependence between cytokines and cell adhesion molecules to induce interleukin-6 production by stromal cells in myeloma. Leukaemia & Lymphoma, 32, 107–119.

    CAS  Google Scholar 

  121. Michigami, T., Shimizu, N., Williams, P. J., Niewolna, M., Dallas, S. L., Mundy, G. R., et al. (2000). Cell–cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood, 96, 1953–1960.

    PubMed  CAS  Google Scholar 

  122. Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A., & Dalton, W. S. (1999). Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood, 93, 1658–1667.

    PubMed  CAS  Google Scholar 

  123. Shain, K. H., Yarde, D. N., Meads, M. B., Huang, M., Jove, R., Hazlehurst, L. A., et al. (2009). Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Research, 69, 1009–1015.

    Article  PubMed  CAS  Google Scholar 

  124. Hoang, B., Zhu, L., Shi, Y., Frost, P., Yan, H., Sharma, S., et al. (2006). Oncogenic RAS mutations in myeloma cells selectively induce cox-2 expression, which participates in enhanced adhesion to fibronectin and chemoresistance. Blood, 107, 4484–4490.

    Article  PubMed  CAS  Google Scholar 

  125. Maris, J. M., Hogarty, M. D., Bagatell, R., & Cohn, S. L. (2007). Neuroblastoma. Lancet, 369, 2106–2120.

    Article  PubMed  CAS  Google Scholar 

  126. Dubois, S. G., Kalika, Y., Lukens, J. N., Brodeur, G. M., Seeger, R. C., Atkinson, J. B., et al. (1999). Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. Journal of Pediatric Hematology/Oncology, 21, 181–189.

    Article  PubMed  CAS  Google Scholar 

  127. Sohara, Y., Shimada, H., Minkin, C., Erdreich-Epstein, A., Nolta, J. A., & DeClerck, Y. A. (2005). Bone marrow mesenchymal stem cells provide an alternate pathway of osteoclast activation and bone destruction by cancer cells. Cancer Research, 65, 1129–1135.

    Article  PubMed  CAS  Google Scholar 

  128. Ara, T., Song, L., Shimada, H., Keshelava, N., Russell, H. V., Metelitsa, L. S., et al. (2009). Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Research, 69, 329–337.

    Article  PubMed  CAS  Google Scholar 

  129. Fukaya, Y., Shimada, H., Wang, L. C., Zandi, E., & DeClerck, Y. A. (2008). Identification of Gal-3 binding protein as a factor secreted by tumor cells that stimulates interleukin-6 expression in the bone marrow stroma. Journal of Biological Chemistry, 283, 18573–18581.

    Article  PubMed  CAS  Google Scholar 

  130. Kakonen, S. M., Selander, K. S., Chirgwin, J. M., Yin, J. J., Burns, S., Rankin, W. A., et al. (2002). Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. Journal of Biological Chemistry, 277, 24571–24578.

    Article  PubMed  CAS  Google Scholar 

  131. Guise, T. A. (2000). Molecular mechanisms of osteolytic bone metastases. Cancer, 88, 2892–2898.

    Article  PubMed  CAS  Google Scholar 

  132. Brocke-Heidrich, K., Kretzschmar, A. K., Pfeifer, G., Henze, C., Loffler, D., Koczan, D., et al. (2004). Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation. Blood, 103, 242–251.

    Article  PubMed  CAS  Google Scholar 

  133. Aggarwal, B. B., Sethi, G., Ahn, K. S., Sandur, S. K., Pandey, M. K., Kunnumakkara, A. B., et al. (2006). Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Annals of the New York Academy of Sciences, 1091, 151–169.

    Article  PubMed  CAS  Google Scholar 

  134. Yamagiwa, Y., Marienfeld, C., Meng, F., Holcik, M., & Patel, T. (2004). Translational regulation of x-linked inhibitor of apoptosis protein by interleukin-6: a novel mechanism of tumor cell survival. Cancer Research, 64, 1293–1298.

    Article  PubMed  CAS  Google Scholar 

  135. Lee, G., & Piquette-Miller, M. (2001). Influence of IL-6 on MDR and MRP-mediated multidrug resistance in human hepatoma cells. Canadian Journal of Physiology and Pharmacology, 79, 876–884.

    Article  PubMed  CAS  Google Scholar 

  136. Dreuw, A., Hermanns, H. M., Heise, R., Joussen, S., Rodriguez, F., Marquardt, Y., et al. (2005). Interleukin-6-type cytokines upregulate expression of multidrug resistance-associated proteins in NHEK and dermal fibroblasts. Journal of Investigative Dermatology, 124, 28–37.

    Article  PubMed  CAS  Google Scholar 

  137. Efferth, T., Fabry, U., & Osieka, R. (2002). Interleukin-6 affects melphalan-induced DNA damage and repair in human multiple myeloma cells. Anticancer Research, 22, 231–234.

    PubMed  CAS  Google Scholar 

  138. Pu, Y. S., Hour, T. C., Chuang, S. E., Cheng, A. L., Lai, M. K., & Kuo, M. L. (2004). Interleukin-6 is responsible for drug resistance and anti-apoptotic effects in prostatic cancer cells. Prostate, 60, 120–129.

    Article  PubMed  CAS  Google Scholar 

  139. Ishikawa, F., Yoshida, S., Saito, Y., Hijikata, A., Kitamura, H., Tanaka, S., et al. (2007). Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotechnology, 25, 1315–1321.

    Article  PubMed  CAS  Google Scholar 

  140. De Toni, F., Racaud-Sultan, C., Chicanne, G., Mas, V. M., Cariven, C., Mesange, F., et al. (2006). A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene, 25, 3113–3122.

    Article  PubMed  CAS  Google Scholar 

  141. Arthur, A., Zannettino, A., & Gronthos, S. (2009). The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. Journal of Cellular Physiology, 218, 237–245.

    Article  PubMed  CAS  Google Scholar 

  142. Hare, J. M., & Chaparro, S. V. (2008). Cardiac regeneration and stem cell therapy. Current Opinion in Organ Transplantion, 13, 536–542.

    Article  Google Scholar 

  143. Fritz, V., & Jorgensen, C. (2008). Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Current Stem Cell Research & Therapy, 3, 32–42.

    Article  CAS  Google Scholar 

  144. Hall, B., Dembinski, J., Sasser, A. K., Studeny, M., Andreeff, M., & Marini, F. (2007). Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. International Journal of Hematology, 86, 8–16.

    Article  PubMed  CAS  Google Scholar 

  145. Sasportas, L. S., Kasmieh, R., Wakimoto, H., Hingtgen, S., van de Water, J. A., Mohapatra, G., et al. (2009). Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 106, 4822–4827.

    Article  PubMed  Google Scholar 

  146. Cavarretta, I. T., Altanerova, V., Matuskova, M., Kucerova, L., Culig, Z., & Altaner, C. (2010). Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Molecular Therapy, 18, 223–231.

    Article  PubMed  CAS  Google Scholar 

  147. Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., et al. (2005). Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Research, 65, 3307–3318.

    PubMed  CAS  Google Scholar 

  148. Nishimoto, N., & Kishimoto, T. (2006). Interleukin 6: from bench to bedside. Nature Clinical Practice Rheumatology, 2, 619–626.

    Article  PubMed  CAS  Google Scholar 

  149. Fulciniti, M., Hideshima, T., Vermot-Desroches, C., Pozzi, S., Nanjappa, P., Shen, Z., et al. (2009). A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clinical Cancer Research, 15, 7144–7152.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge research support from the National Institutes of Health, grants CA084103 (YAD) and T32 GM067587 (SAB). The authors thank J. Rosenberg for her excellent assistance in preparing the manuscript. The authors do not have any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves A. DeClerck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergfeld, S.A., DeClerck, Y.A. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev 29, 249–261 (2010). https://doi.org/10.1007/s10555-010-9222-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9222-7

Keywords

Navigation