Skip to main content
Log in

Feasibility of ultra low-dose thallium stress-redistribution protocol including prone imaging in obese patients using CZT camera

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

High efficiency cadmium–zinc–telluride (CZT) cameras provide an opportunity to lower the injected activities of radiopharmaceuticals for single photon emission tomography (SPECT) myocardial perfusion imaging (MPI). The limits for reducing activities of thallium have not been determined, particularly in obese patients. After an injection of 0.7 megabecquerel (MBq) of thallium/kg, we collected an average 1.5 million counts for the 10-min acquisition in a pilot cohort of ten patients. After extrapolation, we reduced the administered activity to 0.5 MBq/kg to obtain the expected 1 million counts. We studied the image quality in 124 patients (86 men, 43 obese with body mass index over 30 kg/m2) referred for MPI. The quality of images was assessed by a number of recorded counts and visually by a four-grade scale (one-poor quality, four-excellent quality). In non-obese and obese patients, the average number of recorded counts was 1.1 vs. 1.07 million counts for the 10-min stress acquisition, 1.04 vs. 1.06 million counts for the 13-min rest acquisition, and the average quality score was 3.97 vs. 3.90, respectively (p = NS).The mean administered activity was 39.2 ± 7 MBq for non-obese and 48.7 ± 6 for obese patients (p < 0.0001), and the calculated effective dose was 4.0 ± 0.7 and 4.9 ± 0.6 mSv respectively (p < 0.0001). The ultra-low-dose thallium stress-redistribution protocol, including post-stress prone imaging, provides good quality of images with a low radiation burden, even in obese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Slomka PJ, Patton JA, Berman DS, Germano G (2009) Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol 16:255–276

    Article  PubMed  Google Scholar 

  2. Imbert L, Poussier S, Franken PR et al (2012) Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med 53:1897–1903

    Article  PubMed  Google Scholar 

  3. Nakazato R, Berman DS, Hayes SW et al (2013) Myocardial perfusion imaging with a solid-state camera: simulation of a very low dose imaging protocol. J Nucl Med 54(3):373–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Songy B, Guernou M, Lussato D, Queneau M, Geronazzo R (2012) Low-dose thallium-201 protocol with a cadmium-zinc-telluride cardiac camera. Nucl Med Commun 33(5):464–469

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka H, Chikamori T, Tanaka N et al (2014) Diagnostic performance of a novel cadmium-zinc-telluride gamma camera system assessed using fractional flow reserve. Circ J 78(11):2727–2734

    Article  PubMed  Google Scholar 

  6. Verberne HJ, Acampa W, Anagnostopoulos C et al (2015) EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging 42:1929–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sharir T, Pinskiy M, Pardes A et al (2016) Comparison of the diagnostic accuracies of very low stress-dose with standard-dose myocardial perfusion imaging: automated quantification of one-day, stress-first SPECT using a CZT camera. J Nucl Cardiol 23(1):11–20

    Article  PubMed  Google Scholar 

  8. Askew JW, Miller TD, Ruter RL et al (2011) Early image acquisition using a solid-state cardiac camera for fast myocardial perfusion imaging. J Nucl Cardiol 18:840–846

    Article  PubMed  Google Scholar 

  9. Esteves FP, Raggi P, Folks RD et al (2009) Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol 16:927–934

    Article  PubMed  PubMed Central  Google Scholar 

  10. Herzog BA, Buechel RR, Katz R et al (2010) Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: optimized protocol for scan time reduction. J Nucl Med 51:46–51

    Article  PubMed  Google Scholar 

  11. Buechel RR, Herzog BA, Husmann L et al (2010) Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation. Eur J Nucl Med Mol Imaging 37:773–778

    Article  PubMed  Google Scholar 

  12. Einstein AJ, Blankstein R, Andrews H et al (2014) Comparison of image quality, myocardial perfusion, and left ventricular function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency SPECT camera: the MILLISIEVERT study. J Nucl Med 55:1430–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakazato R, Slomka PJ, Fish M et al (2015) Quantitative high-efficiency cadmium-zinc-telluride SPECT with dedicated parallel-hole collimation system in obese patients: results of a multi-center study. J Nucl Cardiol 22(2):266–275

    Article  PubMed  Google Scholar 

  14. Bradley-Moore PR, Lebowitz E, Greene MW, Atkins HL, Ansari AN (1975) Thallium-201 for medical use. II: Biologic behavior. J Nucl Med 16:156–160

    CAS  PubMed  Google Scholar 

  15. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  16. Andersson M, Johansson L, Minarik D et al (2014) Effective dose to adult patients from 338 radiopharmaceuticals estimated using ICRP biokinetic data, ICRP/ICRU computational reference phantoms and ICRP 2007 tissue weighting factors. EJNMMI Phys 1(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leppo JA, Meerdink DJ (1989) Comparison of the myocardial uptake of a technetium-labeled isonitrile analogue and thallium. Circ Res 65:632–639

    Article  CAS  PubMed  Google Scholar 

  18. Berman DS, Kang X, Tamarappoo B et al (2009) Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging. JACC Cardiovasc Imaging 2(3):273–282

    Article  PubMed  Google Scholar 

  19. Matsunari I, Böning G, Ziegler SI et al (1998) Attenuation-corrected rest thallium-201/stress technetium 99m sestamibi myocardial SPECT in normals. J Nucl Cardiol 5(1):48–55

    Article  CAS  PubMed  Google Scholar 

  20. Duvall WL, Guma KA, Kamen J et al (2013) Reduction in occupational and patient radiation exposure from myocardial perfusion imaging: impact of stress-only imaging and high-efficiency SPECT camera technology. J Nucl Med 54(8):1251–1257

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by European Regional Development Fund—Project FNUSA-ICRC (No. CZ.1.05/1.1.00/02.0123) and by the Project No. LQ1605 from the National Program of Sustainability II (MEYS CR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Kincl.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kincl, V., Kamínek, M., Vašina, J. et al. Feasibility of ultra low-dose thallium stress-redistribution protocol including prone imaging in obese patients using CZT camera. Int J Cardiovasc Imaging 32, 1463–1469 (2016). https://doi.org/10.1007/s10554-016-0919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0919-8

Keywords

Navigation