Skip to main content

Advertisement

Log in

Prognostic value of cardiovascular MR imaging biomarkers on outcome in peripheral arterial disease: a 6-year follow-up pilot study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The objective of this pilot study was to explore the prognostic value of outcome of cardiovascular magnetic resonance (MR) imaging biomarkers in patients with symptomatic peripheral arterial disease (PAD) in comparison with traditional risk factors. Forty-two consecutive patients (mean age 64 ± 11 years, 22 men) referred for contrast-enhanced MR angiography (CE-MRA) were included. At baseline a comprehensive cardiovascular MRI examination was performed: CE-MRA of the infra-renal aorta and run-off vessels, carotid vessel wall imaging, cardiac cine imaging and aortic pulse wave velocity (PWV) assessment. Patients were categorized for outcome at 72 ± 5 months follow-up. One patient was lost to follow-up. Over 6 years, six patients had died (mortality rate 14.6 %), six patients (14.6 %) had experienced a cardiac event and three patients (7.3 %) a cerebral event. The mean MRA stenosis class (i.e., average stenosis severity visually scored over 27 standardized segments) was a significant independent predictor for all-cause mortality (beta 3.0 ± standard error 1.3, p = 0.02). Descending aorta PWV, age and diabetes mellitus were interrelated with stenosis severity but none of these were significant independent predictors. For cardiac morbidity, left ventricular ejection fraction (LVEF) and mean MRA stenosis class were associated, but only LVEF was a significant independent predictor (beta −0.14 ± 0.05, p = 0.005). Diabetes mellitus was a significant independent predictor for cerebral morbidity (beta 2.8 ± 1.3, p = 0.03). Significant independent predictors for outcome in PAD are mean MRA stenosis class for all-cause mortality, LVEF for cardiac morbidity and diabetes mellitus for cerebral morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fowkes F, Rudan R, Rudan I et al (2013) Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 382:1329–1340

    Article  PubMed  Google Scholar 

  2. Sampson UK, Fowkes FG, McDermott MM et al (2014) Global and regional burden of death and disability from peripheral artery disease: 21 world regions, 1990 to 2010. Glob Heart 9:145–158

    Article  PubMed  Google Scholar 

  3. Criqui M, Langer R, Fronek A et al (1992) Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med 326:381–386

    Article  CAS  PubMed  Google Scholar 

  4. Criqui M, Ninomiya J, Wingard D, Ji M, Fronek A (2008) Progression of peripheral arterial disease predicts cardiovascular disease morbidity and mortality. J Am Coll Cardiol 52:1736–1742

    Article  PubMed  PubMed Central  Google Scholar 

  5. Araki Y, Kumakura H, Kanai H et al (2012) Prevalence and risk factors for cerebral infarction and carotid artery stenosis in peripheral arterial disease. Atherosclerosis 223:473–477

    Article  CAS  PubMed  Google Scholar 

  6. Cooke J, Wilson A (2010) Biomarkers of peripheral arterial disease. J Am Coll Cardiol 55:2017–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leeper N, Myers J, Zhou M et al (2013) Exercise capacity is the strongest predictor of mortality in patients with peripheral arterial disease. J Vasc Surg 57:728–733

    Article  PubMed  Google Scholar 

  8. Goff DC Jr, Lloyd-Jones DM, Bennett G et al (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:2935–2959

    Article  PubMed  Google Scholar 

  9. Greenland P, Alpert JS, Beller GA et al (2010) ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 56:e50–e103

    Article  PubMed  Google Scholar 

  10. Newman AB, Shemanski L, Manolio TA et al (1999) Ankle-arm index as a predictor of cardiovascular disease and mortality in the Cardiovascular Health Study: the Cardiovascular Health Study Group. Arterioscler Thromb Vasc Biol 19:538–545

    Article  CAS  PubMed  Google Scholar 

  11. Resnick H, Lindsay R, McDermott M et al (2004) Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality: the Strong Heart Study. Circulation 109:733–739

    Article  PubMed  Google Scholar 

  12. Doobay AV, Anand SS (2005) Sensitivity and specificity of the ankle-brachial index to predict future cardiovascular outcomes: a systematic review. Arterioscler Thromb Vasc Biol 25:1463–1469

    Article  CAS  PubMed  Google Scholar 

  13. Wikström J, Hansen T, Johansson L, Lind L, Ahlström H (2008) Ankle brachial index <0.9 underestimates the prevalence of peripheral artery occlusive disease assessed with whole-body magnetic resonance angiography in the elderly. Acta Radiol 49:143–149

    Article  PubMed  Google Scholar 

  14. Leiner T, Kessels AG, Schurink GW et al (2004) Comparison of contrast-enhanced magnetic resonance angiography and digital subtraction angiography in patients with chronic critical ischemia and tissue loss. Invest Radiol 39:435–444

    Article  PubMed  Google Scholar 

  15. Van den Bosch H, Westenberg J, Setz-Pels W et al (2015) Site-specific association between distal aortic pulse wave velocity and peripheral arterial stenosis severity: a prospective cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 17:2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Alexander CM (2003) The coming of age of the metabolic syndrome. Diabetes Care 26:3180–3181

    Article  PubMed  Google Scholar 

  17. Van den Bosch H, Westenberg J, Caris R et al (2013) Peripheral arterial occlusive disease: 3.0-T versus 1.5-T MR angiography compared with digital subtraction angiography. Radiology 266:337–346

    Article  PubMed  Google Scholar 

  18. Alizadeh D, Doornbos J, Tamsma J et al (2007) Assessment of the carotid artery by MRI at 3T: a study on reproducibility. J Magn Reson Imaging 25:1035–1043

    Article  Google Scholar 

  19. Kramer Ch, Barkhausen J, Flamm S, Kim R, Nagel E (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 15:91

    Article  PubMed  PubMed Central  Google Scholar 

  20. Grotenhuis H, Westenberg J, Steendijk P et al (2009) Validation and reproducibility of aortic pulse wave velocity as assessed with velocity-encoded MRI. J Magn Reson Imaging 20:521–526

    Article  Google Scholar 

  21. Saam T, Yuan C, Chu B et al (2007) Predictors of carotid atherosclerotic plaque progression as measured by noninvasive magnetic resonance imaging. Atherosclerosis 194:34–42

    Article  Google Scholar 

  22. Allison MA, Budoff MJ, Nasir K et al (2009) Ethnic-specific risks for atherosclerotic calcification of the thoracic and abdominal aorta (from the Multi-Ethnic Study of Atherosclerosis). Am J Cardiol 104:812–817

    Article  PubMed  PubMed Central  Google Scholar 

  23. Blaha MJ (2014) The future of CV risk prediction: multisite imaging to predict multiple outcomes. J Am Coll Cardiol Cardiovasc Imaging 7:1054–1056

    Article  Google Scholar 

  24. Norgren L, Hiatt W, Dormandy J, Nehler M, Harris K, Fowkes F (2007) Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg 33:S1–S75

    Article  PubMed  Google Scholar 

  25. Miura T, Soga Y, Miyashita Y et al (2014) Five-year prognosis after endovascular therapy in claudicant patients with iliofemoral artery disease. J Endovasc Ther 21:381–388

    Article  PubMed  Google Scholar 

  26. Kals J, Lieberg J, Kampus P, Zagura M, Eha J, Zilmer M (2014) Prognostic impact of arterial stiffness in patients with symptomatic peripheral arterial disease. Eur J Vasc Endovasc Surg 48:308–315

    Article  CAS  PubMed  Google Scholar 

  27. Rogers W, Hu Y, Coast D et al (2001) Age-associated changes in regional aortic pulse wave velocity. J Am Coll Cardiol 38:1123–1129

    Article  CAS  PubMed  Google Scholar 

  28. Westenberg J, Scholte A, Vaskova Z et al (2011) Age-related and regional changes of aortic stiffness in the Marfan syndrome: assessment with velocity-encoded MRI. J Magn Reson Imaging 34:526–531

    Article  PubMed  Google Scholar 

  29. van Elderen SG, Westenberg JJ, Brandts A, van der Meer RW, Romijn JA, Smit JW, de Roos A (2011) Increased aortic stiffness measured by MRI in patients with type 1 diabetes mellitus and relationship to renal function. Am J Roentgenol 196:697–701

    Article  Google Scholar 

  30. McDermott M, Feinglass J, Slavensky R, Pearce W (1994) The ankle-brachial index as a predictor of survival in patients with peripheral vascular disease. J Gen Intern Med 9:445–449

    Article  CAS  PubMed  Google Scholar 

  31. McKenna M, Wolfson S, Kuller L (1991) The ratio of ankle and arm arterial pressure as an independent predictor of mortality. Atherosclerosis 87:119–128

    Article  CAS  PubMed  Google Scholar 

  32. Ouriel K, McDonnell AE, Metz CE, Zarins CK (1982) Critical evaluation of stress testing in the diagnosis of peripheral vascular disease. Surgery 91:686–693

    CAS  PubMed  Google Scholar 

  33. Zou Z, Zhang H, Roditi G, Leiner T, Kucharczyk W, Prince M (2011) Nephrogenic systemic fibrosis: review of 370 biopsy-confirmed cases. J Am Coll Cardiol Cardiovasc Imaging 4:1206–1216

    Article  Google Scholar 

  34. McMurray J, Adamopoulos S, Anker S et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Eur Heart J 33:1787–1847

    Article  PubMed  Google Scholar 

  35. Flu W, van Kuijk J, Hoeks S et al (2010) Prognostic implications of asymptomatic left ventricular dysfunction in patients undergoing vascular surgery. Anesthesiology 112:1316–1324

    Article  PubMed  Google Scholar 

  36. Ingkanisorn WP, Rhoads KL, Aletras AH, Kellman P, Arai AE (2004) Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J Am Coll Cardiol 43:2253–2259

    Article  PubMed  Google Scholar 

  37. Otsuji Y, Handschumacher MD, Liel-Choen N, Tanabe H, Jiang L, Schwammenthal E et al (2001) Mechanism of ischemic mitral regurgitation with segmental left ventricular dysfunction: three-dimensional echocardiographic studies in models of acute and chronic progressive regurgitation. J Am Coll Cardiol 37:641–648

    Article  CAS  PubMed  Google Scholar 

  38. Arakia Y, Kumakura H, Kanai H et al (2012) Prevalence and risk factors for cerebral infarction and carotid artery stenosis in peripheral arterial disease. Atherosclerosis 223:473–477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harrie van den Bosch.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Bosch, H., Westenberg, J., Setz-Pels, W. et al. Prognostic value of cardiovascular MR imaging biomarkers on outcome in peripheral arterial disease: a 6-year follow-up pilot study. Int J Cardiovasc Imaging 32, 1281–1288 (2016). https://doi.org/10.1007/s10554-016-0908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0908-y

Keywords

Navigation