Skip to main content
Log in

Near-infrared spectroscopy combined with intravascular ultrasound in carotid arteries

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Limited insights into the pathophysiology of the atherosclerotic carotid stenosis are available in vivo. We conducted a prospective study to assess safety and feasibility of intravascular ultrasound (IVUS) combined with near-infrared spectroscopy (NIRS) in carotid arteries. In addition, we described the size and the distribution of lipid rich plaques in significant atherosclerotic carotid stenoses. In a prospective single centre study 45 consecutive patients (mean age 66 ± 8 years) with symptomatic (≥50 %) or asymptomatic (≥70 %) stenosis of internal carotid artery (ICA) amendable to carotid stenting were enrolled. A 40 mm long NIRS-IVUS pullback through the stenosis was performed. IVUS and NIRS data were analyzed to assess minimal luminal area (MLA), plaque burden (PB), remodeling index (RI), calcifications, lipid core burden index (LCBI), maximal LCBI in any 4 mm segment of the artery (LCBImx) and LCBI in the 4 mm segment at the site of minimal luminal area (LCBImxMLA). NIRS-IVUS pullbacks were safely performed without overt clinical events. LCBImx was significantly higher than LCBImxMLA (369.1 ± 221.1 vs. 215.7 ± 2589; p = 0.004). Conversely, PB was significantly larger at the site of MLA (87.4 ± 4.8 % vs. 58.3 ± 18.2 %; p < 0001). Distance of the NIRS-IVUS frame with the highest LCBI from the site of MLA was 6.5 ± 7.7 mm. Eighty percent of frames with maximal LCBI were localized within 10 mm from the site of MLA and 67 % proximally to or at the site of MLA. This study suggested safety and feasibility of the NIRS-IVUS imaging of the carotid stenosis and provided insights on the distribution of lipids in the carotid stenosis. Lipid rich plaques were more often located in the sites with a milder stenosis and smaller plaque burden than at the site of MLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAS:

Carotid artery stenting

EEM:

External elastic membrane

EEMCSA:

External elastic membrane cross-sectional area

EEMCSAlcbimx :

External elastic membrane cross-sectional area at the site of maximal lipid core burden index

EEMCSAmla :

External elastic membrane cross-sectional area at the site of minimal luminal area

EEMCSAref :

External elastic membrane cross-sectional area at the site of reference section

ICA:

Internal carotid artery

IVUS:

Intravascular ultrasound

LCBI:

Lipid core burden index

LCBImx:

Maximal lipid core burden index in any 4mm segment of the artery

LCBImxMLA:

Lipid core burden index in the 4 mm segment at the site of minimal luminal area

LCP:

Lipid core plaque

LumenCSA:

Lumen cross-sectional area

MLA:

Minimal luminal area

NIRS:

Near-infrared spectroscopy

PB:

Plaque burden

PBlcbimx :

Plaque burden at the site of maximal lipid core burden index

PBmla :

Plaque burden at the site of minimal luminal area

PlaqueCSA:

Plaque cross-sectional area

RI:

Remodeling index

TIA:

Transient ischemic attack

VH:

Virtual histology

References

  1. Hellings WE, Peeters W, Moll FL, Piers SR, van Setten J, Van der Spek PJ, de Vries JP, Seldenrijk KA, De Bruin PC, Vink A, Velema E, de Kleijn DP, Pasterkamp G (2010) Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome: a prognostic study. Circulation 121:1941–1950

    Article  PubMed  Google Scholar 

  2. Brott TG, Hobson RW II, Howard G, Roubin GS, Clark WM, Brooks W, Mackey A, Hill MD, Leimgruber PP, Sheffet AJ, Howard VJ, Moore WS, Voeks JH, Hopkins LN, Cutlip DE, Cohen DJ, Popma JJ, Ferguson RD, Cohen SN, Blackshear JL, Silver FL, Mohr JP, Lal BK, Meschia JF (2010) CREST Investigators. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med 363:11–23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study (1995) Endarterectomy for asymptomatic carotid artery stenosis. JAMA 273:1421–1428

    Article  Google Scholar 

  4. Derksen WJ, Peeters W, van Lammeren GW, Tersteeg C, de Vries JP, de Kleijn DP, Moll FL, van der Wal AC, Pasterkamp G, Vink A (2011) Different stages of intraplaque hemorrhage are associated with different plaque phenotypes: a large histopathological study in 794 carotid and 276 femoral endarterectomy specimens. Atherosclerosis 218:369–377

    Article  PubMed  CAS  Google Scholar 

  5. Carbone GL, Mauriello A, Christiansen M, Oxvig C, Spagnoli LG, Schwartz RS, Sangiorgi G (2003) Unstable carotid plaque: biochemical and cellular marker of vulnerability. Ital Heart J 4:398–406

    Google Scholar 

  6. Muller JE, Tofler GH, Stone PH (1989) Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79:733–743

    Article  PubMed  CAS  Google Scholar 

  7. Stone GW (2012) In search of vulnerable plaque. Circ Cardiovasc Imaging 5:428–430

    Article  PubMed  Google Scholar 

  8. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13–C18

    Article  PubMed  CAS  Google Scholar 

  9. Waksman R, Serruys PW (2004) Handbook of the vulnerable plaque. Martin Dunitz, New York. ISBN 9781841843230

    Google Scholar 

  10. Madder RD, Stone GW, Erlinge D et al (2013) The search for vulnerable plaque—the pace quickens. J Invasive Cardiol 25(Suppl A):29–33

    Google Scholar 

  11. Gardner CM, Tan H, Hull EL, Lisauskas JB, Sum ST, Meese TM, Jiang C, Madden SP, Caplan JD, Burke AP, Virmani R, Goldstein J, Muller JE (2008) Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging 1:638–648

    Article  PubMed  Google Scholar 

  12. Waxman S, Dixon SR, L’Allier P, Moses JW, Petersen JL, Cutlip D, Tardif JC, Nesto RW, Muller JE, Hendricks MJ, Sum ST, Gardner CM, Goldstein JA, Stone GW, Krucoff MW (2009) In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging 2:858–868

    Article  PubMed  Google Scholar 

  13. Madder RD, Goldstein JA, Madden SP, Puri R, Wolski K, Hendricks M, Sum ST, Kini A, Sharma S, Rizik D, Brilakis ES, Shunk KA, Petersen J, Weisz G, Virmani R, Nicholls SJ, Maehara A, Mintz GS, Stone GW, Muller JE (2013) Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 6:838–846

    Article  PubMed  Google Scholar 

  14. Rizik D, Goldstein JA (2013) NIRS-IVUS Imaging To Characterize the Composition and Structure of Coronary Plaques. J Invasive Cardiol 25:2A–4A

    Google Scholar 

  15. Moreno PR, Lodder RA, Purushothaman KR, Charash WE, O’Connor WN, Muller JE (2002) Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105:923–927

    Article  PubMed  Google Scholar 

  16. Garcìa-Garcìa HM, Gogas BD, Serruys PW, Bruining N (2011) IVUS-based imaging modalities for tissue characterization: similarities and differences. Int J Cardiovasc Imaging 27:215–224

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oemrawsingh RM, Cheng JM, García-García HM, van Geuns RJ, de Boer SP, Simsek C, Kardys I, Lenzen MJ, van Domburg RT, Regar E, Serruys PW, Akkerhuis KM, Boersma E (2014) ATHEROREMO-NIRS Investigators. Near-infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. J Am Coll Cardiol 64:2510–2518

    Article  PubMed  Google Scholar 

  18. Spacek M, Martinkovicova L, Zimolova P, Veselka J (2012) Mid-term outcomes of carotid artery stenting in patients with angiographic string sign. Catheter Cardiovasc Interv 79:174–179

    Article  PubMed  Google Scholar 

  19. Veselka J, Cerná D, Zimolová P, Martinkovicová L, Fiedler J, Hájek P, Malý M, Zemánek D, Duchonová R (2009) Feasibility, safety, and early outcomes of direct carotid artery stent implantation with use of the FilterWire EZ embolic protection system. Catheter Cardiovasc Interv 73:733–738

    Article  PubMed  Google Scholar 

  20. Veselka J, Cerná D, Zimolová P, Blasko P, Fiedler J, Hájek P, Maly M, Zemánek D, Duchonová R (2007) Thirty-day outcomes of direct carotid artery stenting with cerebral protection in high-risk patients. Circ J 71:1468–1472

    Article  PubMed  Google Scholar 

  21. Brugaletta S, Garcia-Garcia HM, Serruys PW, de Boer S, Ligthart J, Gomez-Lara J, Witberg K, Diletti R, Wykrzykowska J, van Geuns RJ, Schultz C, Regar E, Duckers HJ, van Mieghem N, de Jaegere P, Madden SP, Muller JE, van der Steen AF, van der Giessen WJ, Boersma E (2011) NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography. JACC Cardiovasc Imaging 4:647–655

    Article  PubMed  Google Scholar 

  22. Horváth M, Hájek P, Štěchovský C, Veselka J (2014) Vulnerable plaque imaging and acute coronary syndrome. Cor Vasa 56:362–368

    Article  Google Scholar 

  23. Stěchovský C, Horváth M, Hájek P, Veselka J (2014) Detection of vulnerable atherosclerotic plaque with near-infrared spectroscopy: a systematic review. Vnitr Lek 60:375–379

    PubMed  Google Scholar 

  24. White CJ (2014) Carotid artery stenting. J Am Coll Cardiol 64:722–731

    Article  PubMed  Google Scholar 

  25. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW, PROSPECT Investigators (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364:226–235

    Article  PubMed  CAS  Google Scholar 

  26. Puri R, Nicholls SJ, Ellis SG, Tuzcu EM, Kapadia SR (2014) High-risk coronary atheroma: the interplay between ischemia, plaque burden, and disease progression. J Am Coll Cardiol 63:1134–1140

    Article  PubMed  Google Scholar 

  27. Timaran CH, Rosero EB, Martinez AE, Ilarraza A, Modrall JG, Clagett GP (2010) Atherosclerotic plaque composition assessed by virtual histology intravascular ultrasound and cerebral embolization after carotid stenting. J Vasc Surg 52:1188–1195

    Article  PubMed  Google Scholar 

  28. Sangiorgi G, Bedogni F, Sganzerla P, Binetti G, Inglese L, Musialek P, Esposito G, Cremonesi A, Biasi G, Jakala J, Mauriello A, Biondi-Zoccai G (2013) The Virtual histology In CaroTids Observational RegistrY (VICTORY) study: a European prospective registry to assess the feasibility and safety of intravascular ultrasound and virtual histology during carotid interventions. Int J Cardiol 168:2089–2093

    Article  PubMed  Google Scholar 

  29. Pu J, Mintz GS, Biro S, Lee JB, Sum ST, Madden SP, Burke AP, Zhang P, He B, Goldstein JA, Stone GW, Muller JE, Virmani R, Maehara A (2014) Insights into echo-attenuated plaques, echolucent plaques, and plaques with spotty calcification: novel findings from comparisons among intravascular ultrasound, near-infrared spectroscopy, and pathological histology in 2294 human coronary artery segments. J Am Coll Cardiol 63:2220–2233

    Article  PubMed  Google Scholar 

  30. Raghunathan D, Abdel-Karim AR, Papayannis AC, daSilva M, Jeroudi OM et al (2011) Relation between the presence and extent of coronary lipid core plaques detected by near-infrared spectroscopy with postpercutaneous coronary intervention myocardial infarction. Am J Cardiol 107:1613–1618

    Article  PubMed  Google Scholar 

  31. Goldstein JA, Maini B, Dixon SR, Brilakis ES, Grines CL, Rizik DG et al (2011) Detection of lipid-core plaques by intracoronary near-infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circ Cardiovasc Interv 4:429–437

    Article  PubMed  Google Scholar 

  32. Setacci C, de Donato G, Setacci F, Galzerano G, Sirignano P, Cappelli A, Palasciano G (2012) Safety and feasibility of intravascular optical coherence tomography using a nonocclusive technique to evaluate carotid plaques before and after stent deployment. J Endovasc Ther 19:303–311

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Ministry of Health, Czech Republic—conceptual development of research organization, Motol University Hospital, Prague, Czech Republic, 00064203.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Štěchovský.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Štěchovský, C., Hájek, P., Horváth, M. et al. Near-infrared spectroscopy combined with intravascular ultrasound in carotid arteries. Int J Cardiovasc Imaging 32, 181–188 (2016). https://doi.org/10.1007/s10554-015-0687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0687-x

Keywords

Navigation