Skip to main content

Advertisement

Log in

Carotid endarterectomy versus stenting: Does the flow really change? An Echo-Color-Doppler analysis

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To assess potential hemodynamic differences after carotid endarterectomy (CEA) and carotid artery stenting (CAS) and their eventual impact on clinical management. Between July 2012 and October 2013 two groups of 30 patients each referred for CEA or CAS were prospectively enrolled in two tertiary hospital care centers. Pre-procedural imaging assessment of carotid artery disease was performed with Echo-Color-Doppler (ECD) and computed tomography angiography (CTA). ECD was repeated within 24 h and 1, 6 and 12 months after surgical/endovascular procedures. Peak systolic velocity (PSV) and end diastolic velocity (EDV) were assessed at two standard sites: common carotid artery (CCA) and distal internal carotid artery (ICA). Twenty-four hours ECD findings highly differ between the two populations. CCA PSV in the CEA and CAS groups was respectively 44.88 ± 9.16 and 69.20 ± 20.04 cm/s (p = 0.002); CCA EDV was 16.11 ± 2.29 and 19.13 ± 6.42 cm/s (p = 0.065); ICA PSV was 46.11 ± 7.9 and 94.02 ± 57.7 cm/s (p = 0.0012); ICA EDV was 20.22 ± 4.33 and 30.47 ± 18.33 cm/s (p = 0.025). One month, 6 months and 1 year findings confirmed the different trend in the two cohorts; in particular, at 1 year: CCA PSV was 50.94 ± 12.44 and 60.59 ± 26.84 cm/s (p = 0.181); CCA EDV was 17.11 ± 3.46 and 19 ± 16.35 cm/s (p = 0.634); ICA PSV was 51.66 ± 10.1 and 70.86 ± 20.64 cm/s (p = 0.014); ICA EDV was 25.05 ± 8.65 and 32.66 ± 13 cm/s (p = 0.0609). ECD follow-up of patients undergone CEA or CAS may play a critical role in the clinical management. Strict surveillance of blood flow velocities allows reducing false positive re-stenosis diagnosis and choosing the best anti-aggregation therapies. Within the first month CEA patients benefit from a lower risk condition in comparison with CAS patients, due to a significantly faster PSV drop; moreover, long-term CCA PSV after CEA could be used as a surrogate marker of neointima formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Tendera M, Aboyans V, Bartelink ML et al (2011) ESC guidelines on the diagnosis and treatment of peripheral artery diseases: document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the task force on the diagnosis and treatment of peripheral artery diseases of the European society of cardiology (ESC). Eur Heart J 32(22):2851–2906

    Article  PubMed  Google Scholar 

  2. Sirico G, Spadera L, De Laurentis M et al. (2009) Carotid artery disease and stroke in patients with peripheral arterial disease. The role of inflammation. Monaldi archives for chest disease = Archivio Monaldi per le malattie del torace/Fondazione clinica del lavoro, IRCCS [and] Istituto di clinica tisiologica e malattie apparato respiratorio, Universita di Napoli, Secondo ateneo 72(1):10–17

  3. Kim J, Cha MJ, Lee DH et al (2011) The association between cerebral atherosclerosis and arterial stiffness in acute ischemic stroke. Atherosclerosis 219(2):887–891

    Article  CAS  PubMed  Google Scholar 

  4. Brott TG, Halperin JL, Abbara S et al (2013) 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery Developed in Collaboration With the American Academy of Neurology and Society of Cardiovascular Computed Tomography. Catheter Cardiovasc Interv 81(1):E76–E123

    Article  PubMed  Google Scholar 

  5. Tahmasebpour HR, Buckley AR, Cooperberg PL, Fix CH (2005) Sonographic examination of the carotid arteries. Radiographics 25(6):1561–1575

    Article  PubMed  Google Scholar 

  6. Radak D, Tanaskovic S, Matic P et al (2012) Eversion carotid endarterectomy—our experience after 20 years of carotid surgery and 9897 carotid endarterectomy procedures. Ann Vasc Surg 26(7):924–928

    Article  PubMed  Google Scholar 

  7. Ballotta E, Da Giau G, Ermani M, Meneghetti G, Saladini M, Manara R, Baracchini C (2009) Early and long-term outcomes of carotid endarterectomy in the very elderly: an 18-year single-center study. J Vasc Surg 50(3):518–525. doi:10.1016/j.jvs.2009.04.053

    Article  PubMed  Google Scholar 

  8. Lal BK, Hobson RW II, Goldstein J, Chakhtoura EY, Durán WN (2004) Carotid artery stenting: is there a need to revise ultrasound velocity criteria? J Vasc Surg 39(1):58–66

    Article  PubMed  Google Scholar 

  9. Armstrong PA, Bandyk DF, Johnson BL, Shames ML, Zwiebel BR, Back MR (2007) Duplex scan surveillance after carotid angioplasty and stenting: a rational definition of stent stenosis. J Vasc Surg 46(3):460–465

    Article  PubMed  Google Scholar 

  10. Chahwan S, Miller MT, Pigott JP et al (2007) Carotid artery velocity characteristics after carotid artery angioplasty and stenting. J Vasc Surg 45(3):523–526

    Article  PubMed  Google Scholar 

  11. Chi YW, White CJ, Woods TC et al (2007) Ultrasound velocity criteria for carotid in-stent restenosis. Catheter Cardiovasc Interv 69(3):349–354

    Article  PubMed  Google Scholar 

  12. AbuRahma AF, Abu-Halimah S, Bensenhaver J et al (2008) Optimal carotid duplex velocity criteria for defining the severity of carotid in-stent restenosis. J Vasc Surg 48(3):589–594

    Article  PubMed  Google Scholar 

  13. Lal BK, Hobson RW II Tofighi B et al (2008) Duplex ultrasound velocity criteria for the stented carotid artery. J Vasc Surg 47(1):63–73

    Article  PubMed  Google Scholar 

  14. Ghogawala Z, Amin-Hanjani S, Curran J et al (2012) The effect of carotid endarterectomy on cerebral blood flow and cognitive function. J Stroke Cerebrovasc Dis 22:1029–1037

    Article  PubMed  Google Scholar 

  15. North American Symptomatic Carotid Endarterectomy Trial Collaborators (1991) Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 325(7):445–453

  16. Anzidei M, Napoli A, Zaccagna F et al (2012) Diagnostic accuracy of colour Doppler ultrasonography, CT angiography and blood-pool-enhanced MR angiography in assessing carotid stenosis: a comparative study with DSA in 170 patients. Radiol Med (Torino) 117(1):54–71

    Article  CAS  Google Scholar 

  17. Fanelli F, Boatta E, Cannavale A et al (2012) Carotid artery stenting: analysis of a 12-year single-center experience. J Endovasc Ther 19(6):749–756

    Article  PubMed  Google Scholar 

  18. Montisci R, Sanfilippo R, Bura R et al (2013) Status of the circle of Willis and intolerance to carotid cross-clamping during carotid endarterectomy. Eur J Vasc Endovasc Surg 45(2):107–112

    Article  CAS  PubMed  Google Scholar 

  19. Chaturvedi S, Yadav JS (2006) The role of antiplatelet therapy in carotid stenting for ischemic stroke prevention. Stroke 37(6):1572–1577

    Article  CAS  PubMed  Google Scholar 

  20. Gopalan D, Thomas SM (2006) Pharmacotherapy for patients undergoing carotid stenting. Eur J Radiol 60(1):14–19

    Article  PubMed  Google Scholar 

  21. Reichmann BL, Hellings WE, van der Worp HB et al (2013) Interprocedural comparison of changes in natural flow velocity patterns in the internal carotid artery following CAS or CEA. Eur J Vasc Endovasc Surg 45(6):554–561

    Article  CAS  PubMed  Google Scholar 

  22. Bos MJ, Koudstaal PJ, Hofman A et al (2007) Transcranial doppler hemodynamic parameters and risk of stroke: the rotterdam study. Stroke 38(9):2453–2458

    Article  PubMed  Google Scholar 

  23. Dilic M, Kulic M, Balic S et al (2010) Cerebrovascular events: correlation with plaque type, velocity parameters and multiple risk factors. Med Arh 64(4):204–207

    PubMed  Google Scholar 

  24. Bonati LH, Lyrer P, Ederle J, Featherstone R, Brown MM (2012) Percutaneous transluminal balloon angioplasty and stenting for carotid artery stenosis. Cochrane Database Syst Rev 12(9):CD000515. doi:10.1002/14651858.CD000515.pub4

    Google Scholar 

  25. Freeman JW, Snowhill PB, Nosher JL (2010) A link between stent radial forces and vascular wall remodeling: the discovery of an optimal stent radial force for minimal vessel restenosis. Connect Tissue Res 51(4):314–326

    Article  PubMed  Google Scholar 

  26. Johnston CR, Lee K, Flewitt J et al (2010) The mechanical properties of endovascular stents: an in vitro assessment. Cardiovasc Eng 10(3):128–135

    Article  PubMed  Google Scholar 

  27. Schmidt W, Wissgott C, Andresen R et al (2011) Performance characteristics of modern self-expanding nitinol stents indicated for SFA. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 183(9):818–825

    Article  CAS  PubMed  Google Scholar 

  28. Garcia A, Pena E, Martinez MA (2012) Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent. J Mech Behav Biomed Mater 10:166–175

    Article  CAS  PubMed  Google Scholar 

  29. Ni Ghriallais R, Bruzzi M (2012) Self-expanding stent modelling and radial force accuracy. Comput Methods Biomech Biomed Eng 17:318–333

    Article  Google Scholar 

  30. Muller-Hulsbeck S, Schafer PJ, Charalambous N et al (2009) Comparison of carotid stents: an in vitro experiment focusing on stent design. J Endovasc Ther 16(2):168–177

    Article  PubMed  Google Scholar 

  31. Voute MT, Hendriks JM, van Laanen JH et al (2011) Radial force measurements in carotid stents: influence of stent design and length of the lesion. J Vasc Interv Radiol 22(5):661–666

    Article  PubMed  Google Scholar 

  32. Hirschberg K, Radovits T, Korkmaz S et al (2010) Combined superoxide dismutase mimetic and peroxynitrite scavenger protects against neointima formation after endarterectomy in association with decreased proliferation and nitro-oxidative stress. Eur J Vasc Endovasc Surg 40(2):168–175

    Article  CAS  PubMed  Google Scholar 

  33. Hirschberg K, Radovits T, Loganathan S et al (2009) Selective phosphodiesterase-5 inhibition reduces neointimal hyperplasia in rat carotid arteries after surgical endarterectomy. J Thorac Cardiovasc Surg 137(6):1508–1514

    Article  CAS  PubMed  Google Scholar 

  34. Beller CJ, Radovits T, Kosse J et al (2006) Activation of the peroxynitrite-poly (adenosine diphosphate-ribose) polymerase pathway during neointima proliferation: a new target to prevent restenosis after endarterectomy. J Vasc Surg 43(4):824–830

    Article  PubMed  Google Scholar 

  35. Nishimoto S, Hamajima Y, Toda Y et al (2002) Identification of a novel smooth muscle associated protein, smap2, upregulated during neointima formation in a rat carotid endarterectomy model. Biochim Biophys Acta 1576(1–2):225–230

    Article  CAS  PubMed  Google Scholar 

  36. Pauletto P, Puato M, Faggin E et al (2000) Specific cellular features of atheroma associated with development of neointima after carotid endarterectomy: the carotid atherosclerosis and restenosis study. Circulation 102(7):771–778

    Article  CAS  PubMed  Google Scholar 

  37. Kamenskiy AV, Pipinos II, MacTaggart JN et al (2011) Comparative analysis of the biaxial mechanical behavior of carotid wall tissue and biological and synthetic materials used for carotid patch angioplasty. J Biomech Eng 133(11):111008

    Article  PubMed  Google Scholar 

  38. Wasser K, Schnaudigel S, Wohlfahrt J et al (2012) Clinical impact and predictors of carotid artery in-stent restenosis. J Neurol 259(9):1896–1902

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierleone Lucatelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucatelli, P., Fanelli, F., Cirelli, C. et al. Carotid endarterectomy versus stenting: Does the flow really change? An Echo-Color-Doppler analysis. Int J Cardiovasc Imaging 31, 773–781 (2015). https://doi.org/10.1007/s10554-015-0623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0623-0

Keywords

Navigation