Skip to main content
Log in

Side branch healing patterns of the Tryton dedicated bifurcation stent: a 1-year optical coherence tomography follow-up study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The bare-metal Tryton Side Branch (SB) Stent™ (Tryton Medical, Durham, NC, USA) is used with a drug-eluting stent (DES) in the main branch (MB) to treat bifurcation lesions. It is argued that a drug-eluting Tryton-version is needed to improve clinical outcomes, although previous registries have shown good clinical results. More insights in neo-intimal hyperplasia (NIH) growth patterns of the Tryton treatment strategy are needed to decide if and where to drug-coat the stent. Ten patients returned for follow-up angiography (mean follow-up time 393 ± 103 days) and optical coherence tomography (OCT) pullbacks from the MB were obtained in all patients and from the SB in six patients. A per-strut analysis showed an uncovered strut rate of 0.7 % and an incompletely-apposed strut rate of 0.8 %. Most incompletely-apposed struts were found at the bifurcation region, in the luminal half facing towards the SB. Mean NIH thickness in the proximal MB, distal MB and SB were 0.14 ± 0.11, 0.19 ± 0.11, and 0.34 ± 0.19 mm, respectively, with a variety of growth patterns observed in the SB. We found good vascular healing of the DES in the MB, while healing was less favourably in the SB part. Furthermore, we observed a variety of NIH growth patterns in this SB part and more studies are needed to investigate the relation between growth patterns and clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarno G, Lagerqvist B, Frobert O, Nilsson J, Olivecrona G, Omerovic E et al (2012) Lower risk of stent thrombosis and restenosis with unrestricted use of ‘new-generation’ drug-eluting stents: a report from the nationwide Swedish coronary angiography and angioplasty registry (SCAAR). Eur Heart J 33(5):606–613

    Article  PubMed  Google Scholar 

  2. Rathore S, Terashima M, Katoh O, Matsuo H, Tanaka N, Kinoshita Y et al (2009) Predictors of angiographic restenosis after drug eluting stents in the coronary arteries: contemporary practice in real world patients. EuroIntervention 5(3):349–354

    Article  PubMed  Google Scholar 

  3. van Werkum JW, Heestermans AA, Zomer AC, Kelder JC, Suttorp MJ, Rensing BJ et al (2009) Predictors of coronary stent thrombosis: the Dutch Stent Thrombosis Registry. J Am Coll Cardiol 53(16):1399–1409

    Article  PubMed  Google Scholar 

  4. Kaplan AV, Davis HR (2006) Tryton side-branch stent. EuroIntervention 2(2):270–271

    PubMed  Google Scholar 

  5. Onuma Y, Muller R, Ramcharitar S, van Geuns RJ, Louvard Y, Morel MA et al (2008) Tryton I, First-In-Man (FIM) study: six month clinical and angiographic outcome, analysis with new quantitative coronary angiography dedicated for bifurcation lesions. EuroIntervention 3(5):546–552

    Article  PubMed  Google Scholar 

  6. Magro M, Wykrzykowska J, Serruys PW, Simsek C, Nauta S, Lesiak M et al (2011) Six-month clinical follow-up of the Tryton side branch stent for the treatment of bifurcation lesions: a two center registry analysis. Catheter Cardiovasc Interv 77(6):798–806

    Article  PubMed  Google Scholar 

  7. Agostoni P, Foley D, Lesiak M, Belkacemi A, Dens J, Kumsars I et al (2012) A prospective multicentre registry, evaluating real-world usage of the Tryton side branch stent: results of the E-Tryton 150/Benelux registry. EuroIntervention 7(11):1293–1300

    Article  PubMed  Google Scholar 

  8. Grundeken MJ, Smits M, Harskamp RE, Damman P, Woudstra P, Hoorweg AJ et al (2012) Six-month clinical outcomes of the Tryton Side Branch Stent for the treatment of bifurcation lesions. Neth Heart J 20(11):439–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Grundeken MJ, Asgedom S, Damman P, Lesiak M, Norell MS, Garcia E et al (2013) Six-month and one-year clinical outcomes after placement of a dedicated coronary bifurcation stent: a patient-level pooled analysis of eight registry studies. EuroIntervention 9(2):195–203

    Article  PubMed  Google Scholar 

  10. Nakazawa G, Yazdani SK, Finn AV, Vorpahl M, Kolodgie FD, Virmani R (2010) Pathological findings at bifurcation lesions: the impact of flow distribution on atherosclerosis and arterial healing after stent implantation. J Am Coll Cardiol 55(16):1679–1687

    Article  PubMed  Google Scholar 

  11. Zimarino M, Corazzini A, Ricci F, Di NM, De CR (2013) Late thrombosis after double versus single drug-eluting stent in the treatment of coronary bifurcations: a meta-analysis of randomized and observational studies. JACC Cardiovasc Interv 6(7):687–695

    Article  PubMed  Google Scholar 

  12. Magro M, van Geuns RJ (2010) TheTryton side branch stent. EuroIntervention 6(Suppl J):J147–J150

    Article  PubMed  Google Scholar 

  13. Medina A, de Suarez LJ, Pan M (2006) A new classification of coronary bifurcation lesions. Rev Esp Cardiol 59(2):183

    Article  PubMed  Google Scholar 

  14. Otake H, Shite J, Ako J, Shinke T, Tanino Y, Ogasawara D et al (2009) Local determinants of thrombus formation following sirolimus-eluting stent implantation assessed by optical coherence tomography. JACC Cardiovasc Interv 2(5):459–466

    Article  PubMed  Google Scholar 

  15. Dubois C, Adriaenssens T, Ughi G, Wiyono IS, Bennett J, Coosemans M et al (2012) Healing responses after bifurcation stenting with the dedicated TRYTON side-branch Stent (TM) in combination with XIENCE-V (TM) stents: a clinical, angiography, fractional flow reserve and optical coherence tomography study. Catheter Cardiovasc Interv 81(3):E155–E164

    Article  PubMed  Google Scholar 

  16. Serruys PW, Ong AT, Piek JJ, Neumann FJ, van der Giessen WJ, Wiemer M et al (2005) A randomized comparison of a durable polymer everolimus-eluting stent with a bare metal coronary stent: the SPIRIT first trial. EuroIntervention 1(1):58–65

    PubMed  Google Scholar 

  17. Serruys PW, Ruygrok P, Neuzner J, Piek JJ, Seth A, Schofer JJ et al (2006) A randomised comparison of an everolimus-eluting coronary stent with a paclitaxel-eluting coronary stent: the SPIRIT II trial. EuroIntervention 2(3):286–294

    PubMed  Google Scholar 

  18. Stone GW, Midei M, Newman W, Sanz M, Hermiller JB, Williams J et al (2008) Comparison of an everolimus-eluting stent and a paclitaxel-eluting stent in patients with coronary artery disease: a randomized trial. JAMA 299(16):1903–1913

    Article  CAS  PubMed  Google Scholar 

  19. Kozuma K, Kimura T, Kadota K, Suwa S, Kimura K, Iwabuchi M et al (2013) Angiographic findings of everolimus-eluting as compared to sirolimus-eluting stents: angiographic sub-study from the Randomized Evaluation of sirolimus-eluting versus everolimus-eluting stent Trial (RESET). Cardiovasc Interv Ther 28(4):344–351

    Article  CAS  PubMed  Google Scholar 

  20. Stefanini GG, Serruys PW, Silber S, Khattab AA, van Geuns RJ, Richardt G et al (2011) The impact of patient and lesion complexity on clinical and angiographic outcomes after revascularization with zotarolimus- and everolimus-eluting stents: a substudy of the RESOLUTE All Comers Trial (a randomized comparison of a zotarolimus-eluting stent with an everolimus-eluting stent for percutaneous coronary intervention). J Am Coll Cardiol 57(22):2221–2232

    Article  CAS  PubMed  Google Scholar 

  21. Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban HE, Perin M et al (2002) A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 346(23):1773–1780

    Article  CAS  PubMed  Google Scholar 

  22. Schampaert E, Cohen EA, Schluter M, Reeves F, Traboulsi M, Title LM et al (2004) The Canadian study of the sirolimus-eluting stent in the treatment of patients with long de novo lesions in small native coronary arteries (C-SIRIUS). J Am Coll Cardiol 43(6):1110–1115

    Article  CAS  PubMed  Google Scholar 

  23. Fajadet J, Wijns W, Laarman GJ, Kuck KH, Ormiston J, Munzel T et al (2006) Randomized, double-blind, multicenter study of the endeavor zotarolimus-eluting phosphorylcholine-encapsulated stent for treatment of native coronary artery lesions: clinical and angiographic results of the ENDEAVOR II trial. Circulation 114(8):798–806

    Article  CAS  PubMed  Google Scholar 

  24. Colombo A, Drzewiecki J, Banning A, Grube E, Hauptmann K, Silber S et al (2003) Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation 108(7):788–794

    Article  CAS  PubMed  Google Scholar 

  25. Kastrati A, Elezi S, Dirschinger J, Hadamitzky M, Neumann FJ, Schomig A (1999) Influence of lesion length on restenosis after coronary stent placement. Am J Cardiol 83(12):1617–1622

    Article  CAS  PubMed  Google Scholar 

  26. Hikichi Y, Inoue T, Node K (2009) Benefits and limitations of cypher stent-based bifurcation approaches: in vitro evaluation using micro-focus CT scan. J Interv Cardiol 22(2):128–134

    Article  PubMed  Google Scholar 

  27. Murasato Y, Hikichi Y, Horiuchi M (2009) Examination of stent deformation and gap formation after complex stenting of left main coronary artery bifurcations using microfocus computed tomography. J Interv Cardiol 22(2):135–144

    Article  PubMed  Google Scholar 

  28. Shiratori Y, Brugaletta S, Alvarez-Contreras L, Azpeitia Y, Ospino N, Gaido S, et al. (2013) One-year head to head comparison of the neointimal response between sirolimus eluting stent with reservoir technology and everolimus eluting stent: an optical coherence tomography study. Catheter Cardiovasc Interv 82(4):E428–E436

  29. Gomez-Lara J, Brugaletta S, Farooq V, Onuma Y, Diletti R, Windecker S et al (2011) Head-to-head comparison of the neointimal response between metallic and bioresorbable everolimus-eluting scaffolds using optical coherence tomography. JACC Cardiovasc Interv 4(12):1271–1280

    Article  PubMed  Google Scholar 

  30. Kim SJ, Lee H, Cho JM, Park CB, Kim W, Kato K et al (2013) Comparison of zotarolimus-eluting stent and everolimus-eluting stent for vascular healing response: serial 3-month and 12-month optical coherence tomography study. Coron Artery Dis 24(5):431–439

    Article  PubMed  Google Scholar 

  31. Gutierrez-Chico JL, van Geuns RJ, Regar E, van der Giessen WJ, Kelbaek H, Saunamaki K et al (2011) Tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent vs. a fluoropolymer-coated everolimus-eluting stent at 13-month follow-up: an optical coherence tomography substudy from the RESOLUTE All Comers trial. Eur Heart J 32(19):2454–2463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Goto I, Itoh T, Kimura T, Fusazaki T, Matsui H, Sugawara S et al (2011) Morphological and quantitative analysis of vascular wall and neointimal hyperplasia after coronary stenting: comparison of bare-metal and sirolimus-eluting stents using optical coherence tomography. Circ J 75(7):1633–1640

    Article  PubMed  Google Scholar 

  33. Guagliumi G, Costa MA, Sirbu V, Musumeci G, Bezerra HG, Suzuki N et al (2011) Strut coverage and late malapposition with paclitaxel-eluting stents compared with bare metal stents in acute myocardial infarction: optical coherence tomography substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) Trial. Circulation 123(3):274–281

    Article  CAS  PubMed  Google Scholar 

  34. Foin N, Torii R, Alegria E, Sen S, Petraco R, Nijjer S et al (2013) Location of side branch access critically affects results in bifurcation stenting: insights from bench modeling and computational flow simulation. Int J Cardiol 168(4):3623–3628

    Article  CAS  PubMed  Google Scholar 

  35. Alegria-Barrero E, Foin N, Chan PH, Syrseloudis D, Lindsay AC, Dimopolous K et al (2012) Optical coherence tomography for guidance of distal cell recrossing in bifurcation stenting: choosing the right cell matters. EuroIntervention 8(2):205–213

    Article  PubMed  Google Scholar 

  36. Okamura T, Yamada J, Nao T, Suetomi T, Maeda T, Shiraishi K et al (2011) Three-dimensional optical coherence tomography assessment of coronary wire re-crossing position during bifurcation stenting. EuroIntervention 7(7):886–887

    Article  PubMed  Google Scholar 

  37. Gutierrez-Chico JL, Regar E, Nuesch E, Okamura T, Wykrzykowska J, Di MC et al (2011) Delayed coverage in malapposed and side-branch struts with respect to well-apposed struts in drug-eluting stents: in vivo assessment with optical coherence tomography. Circulation 124(5):612–623

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Maik Grundeken and Joanna Wykrzykowska receive consultancy fees from Tryton Medical. None of the other authors declared any relevant conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna J. Wykrzykowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grundeken, M.J., Garcia-Garcia, H.M., Kraak, R.P. et al. Side branch healing patterns of the Tryton dedicated bifurcation stent: a 1-year optical coherence tomography follow-up study. Int J Cardiovasc Imaging 30, 1445–1456 (2014). https://doi.org/10.1007/s10554-014-0504-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0504-y

Keywords

Navigation