Skip to main content
Log in

Left ventricular remodeling and torsion dynamics in hypertensive patients

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Left ventricular (LV) torsion is a fundamental component of wall motion and plays an important role to optimize ventricular ejection fraction. The aim of our study was to calculate by speckle tracking echocardiography LV twist angle in patients with hypertension and LV remodeling, analyzing torsional indices in all patterns of hypertrophy, in comparison to torsional dynamics of age-matched healthy subjects. Hypertensive patients (n = 202) were divided in three groups, patients with concentric remodeling (n = 70), concentric hypertrophy (n = 68) and eccentric hypertrophy (n = 64), in relation to the echocardiographic measurements of relative wall thickness and LV mass, analyzing their torsional patterns by speckle tracking in comparison to age-matched control group. Compared to healthy controls, LV twist angle was increased in patients with hypertension and concentric remodeling (15.2° ± 1.9° vs. 11.0° ± 1.6°; p < 0.001), reaching the highest value in patients with concentric hypertrophy (19.4° ± 2.6°); instead LV twist angle presented depressed in the group of patients that presented eccentric hypertrophy (5.0° ± 1.1°). Regarding LV untwisting rate, it was higher in the concentric remodeling and concentric hypertrophy groups (−123.1°/s ± 12.1°/s and −145.1°/s ± 15.5°/s, respectively) in comparison with the controls (−90.0°/s ± 10.1°/s; p < 0.0001 for both). Instead, lower values of LV untwisting rate were observed in the eccentric remodeling group (−81.6°/s ± 8.1°/s), not significantly different to controls’ values (p = 0.09). Enhanced LV twist angle appears to be a compensatory mechanism in hypertensive patients during the earlier stages of concentric remodeling and concentric hypertrophy; this hyper-torsion is inevitably loss in the more advanced stage of eccentric hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Russel IK, Brouwer WP, Germans T, Knaapen P, Marcus JT, van der Valden J, Gotte MJW, van Rossum AC (2011) Increased left ventricular torsion in hypertrophic cardiomyopathy mutation carriers with normal wall thickness. J Cardiovasc Magn Reson 13:3

    Article  PubMed  Google Scholar 

  2. Goffinet C, Chenot F, Robert A, Pouleur AC, le Polqin de Waroux JB, Vancrayenest D, Gerard O, Pasquet A, Gerber BL and Vanoverschelde JL (2009) Assessment of subendocardial vs subepicardial left ventricular rotation and twist using two-dimensional speckle tracking echocardiography: comparison with tagged cardiac magnetic resonance. Eur Heart J 30:608–617

    Google Scholar 

  3. van Dalen BM, Kauer F, Vletter WB, Soliman OII, van der Zwaan HB, ten Cate FJ, Geleijnse ML (2010) Influence of cardiac shape on left ventricular twist. J Appl Physiol 108:146–151

    Article  PubMed  Google Scholar 

  4. Popescu BA, Beladan CC, Calin A, Muraru D, Deleanu D, Roʂca M, Ginghina C (2009) Left ventricular remodelling and torsional dynamics in dilated cardiomyopathy: reversed apical rotation as a marker of disease severity. Eur J Heart Fail 11:945–951

    Article  PubMed  Google Scholar 

  5. Ingels NB, Hansen DE, Daughters GT, Stinson EB, Alderman EL, Miller DC (1989) Relation between longitudinal, circumferential and oblique shortening and torsional deformation in the left ventricle of the transplanted human heart. Circ Res 64:915–927

    Article  PubMed  Google Scholar 

  6. Mizuguchi Y, Oishi Y, Miyoshi H, Luchi A, Nagase N, Oki T (2010) Concentric left ventricular hypertrophy brings deterioration of systolic longitudinal, circumferential, and radial myocardial deformation in hypertensive patients with preserved left ventricular pump function. J Cardiol 55:23–33

    Article  PubMed  Google Scholar 

  7. Takeuchi M, Borden WB, Nakai H, Nishikage T, Kokumai M, Nagakura T, Otani S, Lang RM (2007) Reduced and delayed untwisting of the left ventricle in patients with hypertension and left ventricular hypertrophy: a study using two dimensional speckle tracking imaging. Eur Heart J 28:2756–2762

    Article  PubMed  Google Scholar 

  8. Mondillo S, Galderisi M, Mele D, Cameli M, Lomoriello VS, Zacà V, Ballo P, D’Andrea A, Muraru D, Losi M, Agricola E, D’Errico A, Buralli S, Sciomer S, Nistri S, Badano L (2011) Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ultrasound Med 30(1):71–83

    PubMed  Google Scholar 

  9. Cameli M, Ballo P, Righini FM, Caputo M, Lisi M, Mondillo S (2011) Physiologic determinants of left ventricular systolic torsion assessed by speckle tracking echocardiography in healthy subjects. Echocardiography 28(6):641–648

    Article  PubMed  Google Scholar 

  10. Kim HK, Sohn DW, Lee SE, Choi SY, Park JS, Kim YJ, Oh BH, Park YB, Choi YS (2007) Assessment of left ventricular rotation and torsion with two-dimensional speckle tracking echocardiography. J Am Soc Echocardiogr 20:45–53

    Article  PubMed  Google Scholar 

  11. Santoro A, Caputo M, Antonelli G, Lisi M, Padeletti M, D’Ascenzi F, Cameli M, Giacomin E, Mondillo S (2011) Left ventricular twisting as determinant of diastolic function: a speckle tracking study in patients with cardiac hypertrophy. Echocardiography 28(8):892–898

    Article  PubMed  Google Scholar 

  12. Lang RM, Bierig M, Devereux RB et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a Branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  13. Levy D, Savage DD, Garrison RJ et al (1987) Echocardiographic criteria for left ventricular hypertrophy: the Framingham Heart Study. Am J Cardiol 59:956–960

    Article  PubMed  CAS  Google Scholar 

  14. Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA (2002) Recommendations for quantification of Doppler echocardiography: a report from the Doppler quantification Task force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 15:167–184

    Article  PubMed  Google Scholar 

  15. Yu CM, Sanderson JE, Marwick TH, Oh JK (2007) Tissue Doppler imaging a new prognosticator for cardiovascular disease. J Am Coll Cardiol 49(19):1903–1914

    Google Scholar 

  16. Kasner M, Westermann D, Steendijk P et al (2007) Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation 116(6):637–647

    Article  PubMed  Google Scholar 

  17. Ommen SR, Nishimura RA, Appleton CP et al (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794

    Article  PubMed  CAS  Google Scholar 

  18. Mondillo S, Galderisi M, Ballo P, Marino PN (2006) Left ventricular systolic longitudinal function: comparison among simple M-mode, pulsed and M-mode color tissue Doppler of mitral annulus in healthy individuals. J Am Soc Echocardiogr 19:1085–1091

    Article  PubMed  Google Scholar 

  19. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428

    Article  PubMed  CAS  Google Scholar 

  20. Park SJ, Miyazaki C, Bruce CJ, Ommen S, Miller F, Oh JK (2008) Left ventricular torsion by two-dimensional speckle tracking echocardiography in patients with diastolic dysfunction and normal ejection fraction. J Am Soc Echocardiogr 21:1129–1137

    Article  PubMed  Google Scholar 

  21. Miuguchi Y, Oishi Y, Miyoshi H, Iuchi A, Nagase N, Ara N, Oki T (2010) Possible mechanisms of left ventricular torsion evaluated by cardioreparative effects of telmisartan in patients with hypertension. Eur J of Echocardiogr 11:690–697

    Article  Google Scholar 

  22. Han W, Xie M, Wang X, Lu Q (2008) Assessment of left ventricular global twist in essential hypertensive heart by speckle tracking imaging. J Huazhong Univ Sci Technolog Med Sci 28(1):114–117

    Article  PubMed  Google Scholar 

  23. Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, Khandheria BK (2006) Left ventricular structure and function. J Am Coll Cardiol 48:1988–2001

    Article  PubMed  Google Scholar 

  24. Esch BT, Scott JM, Warburton DER, Thompson R, Taylor D, Baron JC, Paterson I, Haykowsky MJ (2009). Left ventricular torsion and untwisting during exercise in heart transplant recipients. J Physiol 587(10):2375–2386

    Google Scholar 

  25. Saito MM, Okayama H, Yoshii T, Hiasa G, Sumimoto T, Inaba S, Nishimura K, Inoue K, Ogimoto A, Ohtsuka T, Funada J, Shigematsu Y, Higaki J (2011) The differences in left ventricular torsional behavior between patients with hypertrophic cardiomyopathy and hypertensive heart disease. Int J Cardiol 150:301–306

    Google Scholar 

  26. Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK (2008) Twist mechanics of the left ventricle: principles and application. J Am Coll Cardiol Img 1:366–376

    Google Scholar 

  27. van Dalen BM, Soliman OII, Vletter WB, ten Cate FJ, Geleijnse ML (2008) Age-related changes in the biomechanics of left ventricular twist measured by speckle tracking echocardiography. Am J Physiol Heart Circ Physiol 295:H1705–H1711

    Article  PubMed  Google Scholar 

  28. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF (2007) Left ventricular untwisting rate by speckle tracking echocardiography. Circulation 116:2580–2586

    Article  PubMed  Google Scholar 

  29. Helle-Valle T, Crosby J, Edvardsen T, Lyseggen E, Amundsen BH, Smith HJ et al (2005) New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation 112:3149–3156

    Article  PubMed  Google Scholar 

  30. Dandel M, Lehmkuhl H, Knosalla C, Suramelashvili N, Hetzer R (2009) Strain and strain rate imaging by echocardiography: basic concepts and clinical applicability. Curr Cardiol Rev 5:133–148

    Article  PubMed  Google Scholar 

  31. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, Smulevitz B, Tekeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL (2011) Current and evolving echocardioghraphic tecniques for the quantitative evaluation of cardiac mechanics: ASE/EAE Consensus Statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24:277–313

    Article  PubMed  Google Scholar 

  32. Notomi Y, Lysyansky P, Setser RM, Shiota T, Popovic ZB, Martin-Miklovic MG, Weaver JA, Oryszak SJ, Greenberg NL, White RD, Thomas JD (2005) Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 45:2034–2041

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Cameli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameli, M., Lisi, M., Righini, F.M. et al. Left ventricular remodeling and torsion dynamics in hypertensive patients. Int J Cardiovasc Imaging 29, 79–86 (2013). https://doi.org/10.1007/s10554-012-0054-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-012-0054-0

Keywords

Navigation