Skip to main content
Log in

Inhibiting Gas Hydrate Formation by Polymer–Monoethylene Glycol Mixture

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Inhibition of formation of methane hydrate with cubic structure CS-I and methane-propane (95.66 CH4 + 4.34 C3H8 mole %) hydrate with cubic structure CS-II by isothermal method and method of cooling at the constant rate of 2°C/h, using 0.5% of a kinetic inhibitor (KIH) + 20.8% of the thermodynamic inhibitor (TIH) monoethylene glycol (MEG) is studied. It is shown that the synergic effect of increase in inhibiting capacity of a polymeric kinetic inhibitor (KIH) in the presence of 20.8% of MEG (TIH) is observed in the case of both methane hydrate and methane-propane hydrate inhibition. The synergy manifests itself in the form of increase in supercooling degree by 2.5-3°C that is attained in the KIH + TIH system before the initiation of hydrate formation as compared to a system that contains no TIH (MEG). The induction time is shown to depend on the degree of supercooling in the system while inhibiting CS-1 and CS-II hydrates with 0.5% KIH + 20.8% MEG. The obtained data indicate that KIH + MEG antihydrate reagents can be used to inhibit formation of technogenous gas hydrates at < 0C temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. A. Istomin, V. G. Kvon, Prevention and Liquidation of Gas Hydrates in Natural Gas Production Systems [in Russian], OOO IRTs Gazprom (2004).

  2. H. J. Ng, C. J. Chen, T. Saeterstad, Fluid Phase Equilibria, 36, 99-106 (1987).

    Article  CAS  Google Scholar 

  3. K. Y. Song, R. Kobayashi, Fluid Phase Equilibria, 47, No. 2, 295-308 (1989).

    Article  CAS  Google Scholar 

  4. H. Haghighi et al., Fluid Phase Equilibria, 276, No. 1, 24-30 (2009).

    Article  CAS  Google Scholar 

  5. J. P. Lederhos et al., Chemical Engineering Science, 51, No. 8, 1221-1229 (1996).

    Article  CAS  Google Scholar 

  6. E. D. Sloan, C. A. Koh, Clathrate Hydrates of Natural Gases, 3rd ed., CRC Press/Taylor & Francis, Boca Raton, FL (2008).

    Google Scholar 

  7. M. A. Kelland, Energy & Fuels, 20, 825-847 (2006).

    Article  CAS  Google Scholar 

  8. A. Perrin, O. M. Musa, J. W. Steed, Chemical Society Reviews, 42, No. 5, 1996-2015 (2013).

    Article  CAS  Google Scholar 

  9. B. Kvamme, T. Kuznetsova, K. Aasoldsen, Journal of Molecular Graphics and Modelling, 23, No. 6, 524-536 (2005).

    Article  CAS  Google Scholar 

  10. B. J. Anderson et al., Journal of the American Chemical Society, 127, No. 50, 17852-17862 (2005).

    Article  CAS  Google Scholar 

  11. A. P. Semenov, V. I. Medvedev, P. A. Gushchin, et al., Khim. Tekhnol. Topliv i Masel, No. 6, 24-29 (2015).

  12. J. A. Moore, in: Offshore Technology Conference, Houston, TX, May 4-7, 2009.

  13. E. D. Sloan et al., Industrial & Engineering Chemistry Research, 37, No. 8, 3124-3132 (1998).

    Article  CAS  Google Scholar 

  14. M. Cha et al., Chemical Engineering Science, 99, 184-190 (2013).

    Article  CAS  Google Scholar 

  15. B. Tohidi et al., Energy & Fuels, 29, No. 12, 8254-8260 (2015).

    Article  CAS  Google Scholar 

  16. J. Kim et al., The Journal of Physical Chemistry B, 118, No. 30, 9065-9075 (2014).

    Article  CAS  Google Scholar 

  17. C. Xiao, H. Adidharma, Chemical Engineering Science, 64, No. 7, 1522-1527 (2009).

    Article  CAS  Google Scholar 

  18. C. Xiao, N. Wibisono, H. Adidharma, Chemical Engineering Science, 65, No. 10, 3080-3087 (2010).

    Article  CAS  Google Scholar 

  19. A. R. Richard, H. Adidharma, Chemical Engineering Science, 87, 270-276 (2013).

    Article  CAS  Google Scholar 

  20. K. S. Kim, J. W. Kang, S. P. Kang, Chemical Communications, 47, No. 22, 6341-6343 (2011).

    Article  CAS  Google Scholar 

  21. S. Park et al., Energy & Fuels, 27, No. 11,. 6581-6586 (2013).

    Article  CAS  Google Scholar 

  22. H. Ajiro et al., Energy & Fuels, 24, No. 12, 6400-6410 (2010).

    Article  CAS  Google Scholar 

  23. P. C. Chua et al., Energy & Fuels, 26, No. 8, 4961-4967 (2012).

    Article  CAS  Google Scholar 

  24. P. C. Chua et al., Energy & Fuels, 27, No. 1, 183-188 (2012).

    Article  Google Scholar 

  25. J. M. Cohen, P. F. Wolf, W. D. Young, Energy & Fuels, 12, No. 2, 216-218 (1998).

    Article  CAS  Google Scholar 

  26. T. M. Svartaas, M. A. Kelland, L. Dybvik, Annals of the New York Academy of Sciences, 912 (1)., 744-752 (2000).

    Article  CAS  Google Scholar 

  27. I. Medvedev et al., Chemistry and Technology of Fuels and Oils, 51, No. 5, 470-479 (2015).

    Article  CAS  Google Scholar 

  28. P. Gayet, C. Dicharry, G. Marion, et al., Chemical Engineering Science, 60, 5751-5758 (2005).

    Article  CAS  Google Scholar 

  29. K. K. Oestergaard et al., Journal of Petroleum Science and Engineering, 48, No. 1, 70-80 (2005).

    Article  Google Scholar 

  30. E. D. Sloan, The Hydrate Prediction Program Csmhyd 2.0 (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Semenov.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 29 – 33, January– February, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, A.P., Medvedev, V.I., Gushchin, P.A. et al. Inhibiting Gas Hydrate Formation by Polymer–Monoethylene Glycol Mixture. Chem Technol Fuels Oils 52, 43–51 (2016). https://doi.org/10.1007/s10553-016-0671-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-016-0671-8

Keywords

Navigation