Skip to main content

Advertisement

Log in

Association of germline microRNA SNPs in pre-miRNA flanking region and breast cancer risk and survival: the Carolina Breast Cancer Study

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Common germline variation in the 5′ region proximal to precursor (pre-) miRNA gene sequences is evaluated for association with breast cancer risk and survival among African Americans and Caucasians.

Methods

We genotyped nine single nucleotide polymorphisms (SNPs) within six miRNA gene regions previously associated with breast cancer, in 1,972 cases and 1,776 controls. In a race-stratified analysis using unconditional logistic regression, odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated to evaluate SNP association with breast cancer risk. Additionally, hazard ratios (HRs) for breast cancer-specific mortality were estimated.

Results

Two miR-185 SNPs provided suggestive evidence of an inverse association with breast cancer risk (rs2008591, OR = 0.72 (95 % CI = 0.53–0.98, p value = 0.04) and rs887205, OR = 0.71 (95 % CI = 0.52–0.96, p value = 0.03), respectively) among African Americans. Two SNPs, miR-34b/34c (rs4938723, HR = 0.57 (95 % CI = 0.37–0.89, p value = 0.01)) and miR-206 (rs6920648, HR = 0.77 (95 % CI = 0.61–0.97, p value = 0.02)), provided evidence of association with breast cancer survival. Further adjustment for stage resulted in more modest associations with survival (HR = 0.65 [95 % CI = 0.42–1.02, p value = 0.06] and HR = 0.79 [95 % CI = 0.62–1.00, p value = 0.05, respectively]).

Conclusions

Our results suggest that germline variation in the 5′ region proximal to pre-miRNA gene sequences may be associated with breast cancer risk among African Americans and breast cancer-specific survival generally; however, further validation is needed to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3′-UTR:

3′-Untranslated region

AIMs:

Ancestry informative markers

CBCS:

Carolina Breast Cancer Study

cDNA:

Complementary DNA made from an mRNA template

CI:

Confidence interval

CIS:

Breast carcinoma in situ

HR:

Hazard ratio

kb:

Kilobase

LD:

Linkage disequilibrium

MAF:

Minor allele frequency

miRNA or miR:

MicroRNA

mRNA:

Messenger RNA

nt:

Nucleotide

OR:

Odds ratio

Pol II:

Polymerase II

Pol III:

Polymerase III

pre-miRNA:

Precursor microRNA

pri-miRNA:

Primary miRNA transcript

SNP:

Single nucleotide polymorphism

References

  1. Bentwich I, Avniel A, Karov Y et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770. doi:10.1038/ng1590

    Article  PubMed  CAS  Google Scholar 

  2. Schanen BC, Li X (2011) Transcriptional regulation of mammalian miRNA genes. Genomics 97:1–6. doi:10.1016/j.ygeno.2010.10.005

    Article  PubMed  CAS  Google Scholar 

  3. Lee Y, Jeon K, Lee JT et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  PubMed  CAS  Google Scholar 

  4. Heneghan HM, Miller N, Lowery AJ et al (2009) MicroRNAs as novel biomarkers for breast cancer. J Oncol 2009:950201. doi:10.1155/2010/950201

    PubMed  CAS  Google Scholar 

  5. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. doi:10.1016/j.cell.2004.12.035

    Article  PubMed  CAS  Google Scholar 

  6. Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060. doi:10.1038/sj.emboj.7600385

    Article  PubMed  CAS  Google Scholar 

  7. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101. doi:10.1038/nsmb1167

    Article  PubMed  CAS  Google Scholar 

  8. Song Gao J, Zhang Y, Li M et al (2010) Atypical transcription of microRNA gene fragments. Nucleic Acids Res 38:2775–2787. doi:10.1093/nar/gkp1242

    Article  PubMed  Google Scholar 

  9. Marson A, Levine SS, Cole MF et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134:521–533. doi:10.1016/j.cell.2008.07.020

    Article  PubMed  CAS  Google Scholar 

  10. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247. doi:10.1261/rna.7240905

    Article  PubMed  CAS  Google Scholar 

  11. Duan S, Mi S, Zhang W et al (2009) Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes. RNA Biol 6:412–425

    Article  PubMed  CAS  Google Scholar 

  12. Sethupathy P, Borel C, Gagnebin M et al (2007) Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 81:405–413. doi:10.1086/519979

    Article  PubMed  CAS  Google Scholar 

  13. Mishra PJ, Humeniuk R, Mishra PJ et al (2007) A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 104:13513–13518. doi:10.1073/pnas.0706217104

    Article  PubMed  CAS  Google Scholar 

  14. Landi D, Gemignani F, Naccarati A et al (2008) Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis 29:579–584. doi:10.1093/carcin/bgm304

    Article  PubMed  CAS  Google Scholar 

  15. Brendle A, Lei H, Brandt A et al (2008) Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis 29:1394–1399. doi:10.1093/carcin/bgn126

    Article  PubMed  CAS  Google Scholar 

  16. O’Day E, Lal A (2010) MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 12:201. doi:10.1186/bcr2484

    Article  PubMed  Google Scholar 

  17. Yu Z, Baserga R, Chen L et al (2010) MicroRNA, cell cycle, and human breast cancer. Am J Pathol 176:1058–1064. doi:10.2353/ajpath.2010.090664

    Article  PubMed  CAS  Google Scholar 

  18. Hoffman AE, Zheng T, Yi C et al (2009) MicroRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res 69:5970–5977. doi:10.1158/0008-5472.CAN-09-0236

    Article  PubMed  CAS  Google Scholar 

  19. Hu Z, Liang J, Wang Z et al (2009) Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat 30:79–84. doi:10.1002/humu.20837

    Article  PubMed  CAS  Google Scholar 

  20. Kontorovich T, Levy A, Korostishevsky M et al (2010) Single nucleotide polymorphisms in miRNA binding sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high-risk women. Int J Cancer 127:589–597. doi:10.1002/ijc.25065

    Article  PubMed  CAS  Google Scholar 

  21. Akkiz H, Bayram S, Bekar A et al (2011) A functional polymorphism in pre-microRNA-196a-2 contributes to the susceptibility of hepatocellular carcinoma in a Turkish population: a case–control study. J Viral Hepat 18:e399–e407. doi:10.1111/j.1365-2893.2010.01414.x

    Article  PubMed  CAS  Google Scholar 

  22. Mittal RD, Gangwar R, George GP et al (2011) Investigative role of pre-microRNAs in bladder cancer patients: a case–control study in North India. DNA Cell Biol 30:401–406. doi:10.1089/dna.2010.1159

    Article  PubMed  CAS  Google Scholar 

  23. Okubo M, Tahara T, Shibata T et al (2010) Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population. Helicobacter 15:524–531. doi:10.1111/j.1523-5378.2010.00806.x

    Article  PubMed  CAS  Google Scholar 

  24. Jedlinski DJ, Gabrovska PN, Weinstein SR et al (2011) Single nucleotide polymorphism in hsa-mir-196a-2 and breast cancer risk: a case control study. Twin Res Hum Genet 14:417–421. doi:10.1375/twin.14.5.417

    Article  PubMed  Google Scholar 

  25. Permuth-Wey J, Thompson RC, Burton Nabors L et al (2011) A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J Neurooncol. doi:10.1007/s11060-011-0634-1

    PubMed  Google Scholar 

  26. Liang D, Meyer L, Chang DW et al (2010) Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Cancer Res 70:9765–9776. doi:10.1158/0008-5472.CAN-10-0130

    Article  PubMed  CAS  Google Scholar 

  27. Hu Z, Shu Y, Chen Y et al (2011) Genetic polymorphisms in the precursor MicroRNA flanking region and non-small cell lung cancer survival. Am J Respir Crit Care Med 183:641–648. doi:10.1164/rccm.201005-0717OC

    Article  PubMed  CAS  Google Scholar 

  28. Newman B, Moorman PG, Millikan R et al (1995) The Carolina Breast Cancer Study: integrating population-based epidemiology and molecular biology. Breast Cancer Res Treat 35:51–60

    Article  PubMed  CAS  Google Scholar 

  29. Millikan R, Eaton A, Worley K et al (2003) HER2 codon 655 polymorphism and risk of breast cancer in African Americans and whites. Breast Cancer Res Treat 79:355–364

    Article  PubMed  CAS  Google Scholar 

  30. Millikan RC, Newman B, Tse CK et al (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109:123–139. doi:10.1007/s10549-007-9632-6

    Article  PubMed  Google Scholar 

  31. Weinberg CR, Sandler DP (1991) Randomized recruitment in case–control studies. Am J Epidemiol 134:421–432

    PubMed  CAS  Google Scholar 

  32. Cannell IG, Bushell M (2010) Regulation of Myc by miR-34c: a mechanism to prevent genomic instability? Cell Cycle 9:2726–2730

    Article  PubMed  CAS  Google Scholar 

  33. Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070. doi:10.1158/0008-5472.CAN-05-1783

    Article  PubMed  CAS  Google Scholar 

  34. Verghese ET, Hanby AM, Speirs V et al (2008) Small is beautiful: microRNAs and breast cancer-where are we now? J Pathol 215:214–221. doi:10.1002/path.2359

    Article  PubMed  CAS  Google Scholar 

  35. Tavazoie SF, Alarcon C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152. doi:10.1038/nature06487

    Article  PubMed  CAS  Google Scholar 

  36. Barnholtz-Sloan JS, Shetty PB, Guan X et al (2010) FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women. Carcinogenesis 31:1417–1423. doi:10.1093/carcin/bgq128

    Article  PubMed  CAS  Google Scholar 

  37. Tian C, Hinds DA, Shigeta R et al (2006) A genomewide single-nucleotide-polymorphism panel with high ancestry information for African American admixture mapping. Am J Hum Genet 79:640–649. doi:10.1086/507954

    Article  PubMed  CAS  Google Scholar 

  38. Barnholtz-Sloan JS, McEvoy B, Shriver MD et al (2008) Ancestry estimation and correction for population stratification in molecular epidemiologic association studies. Cancer Epidemiol Biomarkers Prev 17:471–477. doi:10.1158/1055-9965.EPI-07-0491

    Article  PubMed  CAS  Google Scholar 

  39. Lin DY, Zeng D, Millikan R (2005) Maximum likelihood estimation of haplotype effects and haplotype-environment interactions in association studies. Genet Epidemiol 29:299–312. doi:10.1002/gepi.20098

    Article  PubMed  CAS  Google Scholar 

  40. Lin D, Zeng D (2006) Likelihood-based inference on haplotype effects in genetic association studies. J Am Stat Assoc 101:89–104

    Article  CAS  Google Scholar 

  41. Hu YJ, Lin DY, Zeng D (2010) A general framework for studying genetic effects and gene-environment interactions with missing data. Biostatistics 11:583–598. doi:10.1093/biostatistics/kxq015

    Article  PubMed  CAS  Google Scholar 

  42. O’Brien KM, Cole SR, Tse CK et al (2010) Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study. Clin Cancer Res 16:6100–6110. doi:10.1158/1078-0432.CCR-10-1533

    Article  PubMed  Google Scholar 

  43. Hinske LC, Galante PA, Kuo WP et al (2010) A potential role for intragenic miRNAs on their hosts’ interactome. BMC Genom 11:533. doi:10.1186/1471-2164-11-533

    Article  Google Scholar 

  44. Takahashi Y, Forrest AR, Maeno E et al (2009) MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS ONE 4:e6677. doi:10.1371/journal.pone.0006677

    Article  PubMed  Google Scholar 

  45. Liu H, Cao YD, Ye WX et al (2010) Effect of microRNA-206 on cytoskeleton remodelling by downregulating Cdc42 in MDA-MB-231 cells. Tumori 96:751–755

    PubMed  CAS  Google Scholar 

  46. Liu M, Lang N, Chen X et al (2011) miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett 301:151–160. doi:10.1016/j.canlet.2010.11.009

    Article  PubMed  CAS  Google Scholar 

  47. Corcoran C, Friel AM, Duffy MJ et al (2011) Intracellular and extracellular microRNAs in breast cancer. Clin Chem 57:18–32. doi:10.1373/clinchem.2010.150730

    Article  PubMed  CAS  Google Scholar 

  48. Buffa FM, Camps C, Winchester L et al (2011) MicroRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res 71:5635–5645. doi:10.1158/0008-5472.CAN-11-0489

    Article  PubMed  CAS  Google Scholar 

  49. Wu H, Zhu S, Mo YY (2009) Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 19:439–448. doi:10.1038/cr.2009.18

    Article  PubMed  CAS  Google Scholar 

  50. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  51. Vogt M, Munding J, Gruner M et al (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458:313–322. doi:10.1007/s00428-010-1030-5

    Article  PubMed  Google Scholar 

  52. Tarasov V, Jung P, Verdoodt B et al (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593

    Article  PubMed  CAS  Google Scholar 

  53. Chang TC, Wentzel EA, Kent OA et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752. doi:10.1016/j.molcel.2007.05.010

    Article  PubMed  CAS  Google Scholar 

  54. Raver-Shapira N, Marciano E, Meiri E et al (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743. doi:10.1016/j.molcel.2007.05.017

    Article  PubMed  CAS  Google Scholar 

  55. He L, He X, Lim LP et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134. doi:10.1038/nature05939

    Article  PubMed  CAS  Google Scholar 

  56. Bommer GT, Gerin I, Feng Y et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307. doi:10.1016/j.cub.2007.06.068

    Article  PubMed  CAS  Google Scholar 

  57. Corney DC, Flesken-Nikitin A, Godwin AK et al (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67:8433–8438. doi:10.1158/0008-5472.CAN-07-1585

    Article  PubMed  CAS  Google Scholar 

  58. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199. doi:10.1038/cdd.2009.56

    Article  PubMed  CAS  Google Scholar 

  59. Beviglia L, Matsumoto K, Lin CS et al (1997) Expression of the c-Met/HGF receptor in human breast carcinoma: correlation with tumor progression. Int J Cancer 74:301–309

    Article  PubMed  CAS  Google Scholar 

  60. Gastaldi S, Comoglio PM, Trusolino L (2010) The met oncogene and basal-like breast cancer: another culprit to watch out for? Breast Cancer Res 12:208. doi:10.1186/bcr2617

    Article  PubMed  Google Scholar 

  61. Adams BD, Furneaux H, White BA (2007) The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21:1132–1147. doi:10.1210/me.2007-0022

    Article  PubMed  CAS  Google Scholar 

  62. Leivonen SK, Makela R, Ostling P et al (2009) Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 28:3926–3936. doi:10.1038/onc.2009.241

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the UNC BioSpecimen Processing Facility for our DNA extractions, blood processing, storage, and sample disbursement (https://genome.unc.edu/bsp) and the UNC Mammalian Genotyping Core for CBCS sample genotyping (http://mgc.unc.edu). The authors would also like to thank Amy Otto for her thorough review and editing. This work was supported by the Specialized Program of Research Excellence (SPORE) in Breast Cancer at UNC funded by National Institute of Health/National Cancer Institute [P50-CA58223] (supports JTB, CKT, and RCM); the Lineberger Comprehensive Cancer Center Core Grant funded by the National Institute of Health/National Cancer Institute [P30-CA16086] (funded manuscript preparation and submission), and by the Lineberger Comprehensive Cancer Center Cancer Control Education Program Predoctoral Fellowship [R25 CA57726] (supported SJN).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All experiments comply with the current laws of the United States of America, where they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeannette T. Bensen.

Additional information

Dr. Robert C. Millikan—deceased.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bensen, J.T., Tse, C.K., Nyante, S.J. et al. Association of germline microRNA SNPs in pre-miRNA flanking region and breast cancer risk and survival: the Carolina Breast Cancer Study. Cancer Causes Control 24, 1099–1109 (2013). https://doi.org/10.1007/s10552-013-0187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-013-0187-z

Keywords

Navigation