Skip to main content

Advertisement

Log in

Localized experimental bone metastasis drives osteolysis and sensory hypersensitivity at distant non-tumor-bearing sites

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Patients with breast cancer metastasis to bone suffer from inadequate pain relief. Animal models provide increased understanding of cancer-induced bone and sensory alterations. The objective of this study was to investigate the measures of pain at distant non-tumor-bearing sites in animals with localized bone metastasis. Immunocompetent BALB/c mice are injected intra-tibially with murine mammary carcinoma cells (4T1) or saline, and the sensitivity to mechanical and thermal stimuli in the contralateral paw was examined. In addition to previously demonstrated development of osteolysis and hypersensitivity to mechanical and thermal stimuli in the cancer-injected tibia, these animals exhibited an increase in sensory hypersensitivity in the contralateral limb. No bone lesions were evident on radiographs of the contralateral limbs. Histomorphometry detected decreased bone volume per tissue volume and increased osteoclast number in the contralateral tibia and vertebral bones of cancer-bearing animals. Neuroplasticity was examined by immunofluorescence for calcitonin gene-related peptide (CGRP) in sensory neurons and glial fibrillary acidic protein (GFAP) in lumbar spinal cords. CGRP-immunoreactivity and GFAP-immunoreactivity were significantly elevated both ipsilateral and contralateral in tumor-bearing animals. The anti-inflammatory and osteolysis-targeting drug rapamycin reduced hypersensitivity to mechanical and cold stimuli, attenuated GFAP over-expression, and lowered osteoclast number. The osteoclast-targeting drug pamidronate reduced sensitivity to cold and protected against bone loss. Localized bone cancer drives hypersensitivity, bone remodeling, and sensory neuron plasticity at sites distant from the primary tumor area. Drugs targeting these mechanisms may be useful in the treatment of pain distant from the primary tumor site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20 Pt 2):6243s–6249s. doi:10.1158/1078-0432.ccr-06-0931

    Article  PubMed  Google Scholar 

  2. Faccio R (2011) Immune regulation of the tumor/bone vicious cycle. Ann N Y Acad Sci 1237(1):71–78. doi:10.1111/j.1749-6632.2011.06244.x

    Article  CAS  PubMed  Google Scholar 

  3. Mundy GR (1997) Mechanisms of bone metastasis. Cancer 80(8 Suppl):1546–1556

    Article  CAS  PubMed  Google Scholar 

  4. Smith HS, Barkin RL (2014) Painful boney metastases. Am J Ther 21(2):106–130. doi:10.1097/MJT.0b013e3182456dff

    Article  PubMed  Google Scholar 

  5. Rao A, Cohen HJ (2004) Symptom management in the elderly cancer patient: fatigue, pain, and depression. J Natl Cancer Inst Monogr 32:150–157. doi:10.1093/jncimonographs/lgh031

    Article  PubMed  Google Scholar 

  6. Cai B, Nickman NA, Gaffney DK (2013) The role of palliative external beam radiation therapy in boney metastases pain management. J Pain Palliat Care Pharmacother 27(1):28–34. doi:10.3109/15360288.2012.757267

    Article  PubMed  Google Scholar 

  7. Abdelaziz DM, Stone LS, Komarova SV (2014) Osteolysis and pain due to experimental bone metastases are improved by treatment with rapamycin. Breast Cancer Res Treat 143(2):227–237. doi:10.1007/s10549-013-2799-0

    Article  CAS  PubMed  Google Scholar 

  8. Mao-Ying QL, Wang XW, Yang CJ, Li X, Mi WL, Wu GC, Wang YQ (2012) Robust spinal neuroinflammation mediates mechanical allodynia in Walker 256 induced bone cancer rats. Mol Brain 5:16. doi:10.1186/1756-6606-5-16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Milligan ED, Twining C, Chacur M, Biedenkapp J, O’Connor K, Poole S, Tracey K, Martin D, Maier SF, Watkins LR (2003) Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 23(3):1026–1040

    CAS  PubMed  Google Scholar 

  10. Schreiber KL, Beitz AJ, Wilcox GL (2008) Activation of spinal microglia in a murine model of peripheral inflammation-induced, long-lasting contralateral allodynia. Neurosci Lett 440(1):63–67. doi:10.1016/j.neulet.2008.05.044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ferland CE, Laverty S, Beaudry F, Vachon P (2011) Gait analysis and pain response of two rodent models of osteoarthritis. Pharmacol Biochem Behav 97(3):603–610. doi:10.1016/j.pbb.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  12. Paplomata E, O’Regan R (2014) The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol 6(4):154–166. doi:10.1177/1758834014530023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Yardley DA, Noguchi S, Pritchard KI, Burris HA 3rd, Baselga J, Gnant M, Hortobagyi GN, Campone M, Pistilli B, Piccart M, Melichar B, Petrakova K, Arena FP, Erdkamp F, Harb WA, Feng W, Cahana A, Taran T, Lebwohl D, Rugo HS (2013) Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv Ther 30(10):870–884. doi:10.1007/s12325-013-0060-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Shih MH, Kao SC, Wang W, Yaster M, Tao YX (2012) Spinal cord NMDA receptor-mediated activation of mammalian target of rapamycin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats. J Pain 13(4):338–349. doi:10.1016/j.jpain.2011.12.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  CAS  PubMed  Google Scholar 

  16. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63. doi:10.1016/0165-0270(94)90144-9

    Article  CAS  PubMed  Google Scholar 

  17. Choi Y, Yoon YW, Na HS, Kim SH, Chung JM (1994) Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59(3):369–376

    Article  CAS  PubMed  Google Scholar 

  18. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88. doi:10.1016/0304-3959(88)90026-7

    Article  CAS  PubMed  Google Scholar 

  19. Jensen EC (2013) Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec (Hoboken) 296(3):378–381. doi:10.1002/ar.22641

    Article  Google Scholar 

  20. Wang XW, Li TT, Zhao J, Mao-Ying QL, Zhang H, Hu S, Li Q, Mi WL, Wu GC, Zhang YQ, Wang YQ (2012) Extracellular signal-regulated kinase activation in spinal astrocytes and microglia contributes to cancer-induced bone pain in rats. Neuroscience 217:172–181. doi:10.1016/j.neuroscience.2012.04.065

    Article  CAS  PubMed  Google Scholar 

  21. Twining CM, Sloane EM, Milligan ED, Chacur M, Martin D, Poole S, Marsh H, Maier SF, Watkins LR (2004) Peri-sciatic proinflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in rats. Pain 110(1–2):299–309. doi:10.1016/j.pain.2004.04.008

    Article  CAS  PubMed  Google Scholar 

  22. Arguis MJ, Perez J, Martinez G, Ubre M, Gomar C (2008) Contralateral neuropathic pain following a surgical model of unilateral nerve injury in rats. Reg Anesth Pain Med 33(3):211–216. doi:10.1016/j.rapm.2007.12.003

    Article  PubMed  Google Scholar 

  23. Mao-Ying Q-L, Zhao J, Dong Z-Q, Wang J, Yu J, Yan M-F, Zhang Y-Q, Wu G-C, Wang Y-Q (2006) A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Biochem Biophys Res Commun 345(4):1292–1298. doi:10.1016/j.bbrc.2006.04.186

    Article  CAS  PubMed  Google Scholar 

  24. Lee BH, Seong J, Kim UJ, Won R, Kim J (2005) Behavioral characteristics of a mouse model of cancer pain. Yonsei Med J 46(2):252–259. doi:10.3349/ymj.2005.46.2.252

    Article  PubMed Central  PubMed  Google Scholar 

  25. Dore-Savard L, Otis V, Belleville K, Lemire M, Archambault M, Tremblay L, Beaudoin JF, Beaudet N, Lecomte R, Lepage M, Gendron L, Sarret P (2010) Behavioral, medical imaging and histopathological features of a new rat model of bone cancer pain. PLoS ONE 5(10):e13774. doi:10.1371/journal.pone.0013774

    Article  PubMed Central  PubMed  Google Scholar 

  26. Andrews NA (2012) Circulating and disseminated tumor cells: many challenges, and even more opportunities, for the cancer and bone field. IBMS BoneKEy 9

  27. Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW (2010) Bone cancer pain. Ann N Y Acad Sci 1198(1):173–181. doi:10.1111/j.1749-6632.2009.05429.x

    Article  PubMed  Google Scholar 

  28. Psaila B, Kaplan RN, Port ER, Lyden D (2006) Priming the ‘soil’ for breast cancer metastasis: the pre-metastatic niche. Breast Dis 26:65–74

    CAS  PubMed  Google Scholar 

  29. Halper J (2010) Growth factors as active participants in carcinogenesis: a perspective. Vet Pathol 47(1):77–97. doi:10.1177/0300985809352981

    Article  CAS  PubMed  Google Scholar 

  30. Sevcik MA, Ghilardi JR, Peters CM, Lindsay TH, Halvorson KG, Jonas BM, Kubota K, Kuskowski MA, Boustany L, Shelton DL, Mantyh PW (2005) Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain 115(1–2):128–141. doi:10.1016/j.pain.2005.02.022

    Article  CAS  PubMed  Google Scholar 

  31. Constantin CE, Mair N, Sailer CA, Andratsch M, Xu ZZ, Blumer MJ, Scherbakov N, Davis JB, Bluethmann H, Ji RR, Kress M (2008) Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model. J Neurosci 28(19):5072–5081. doi:10.1523/jneurosci.4476-07.2008

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt BL, Hamamoto DT, Simone DA, Wilcox GL (2010) Mechanism of cancer pain. Mol Interv 10(3):164–178. doi:10.1124/mi.10.3.7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Goldberg JE, Schwertfeger KL (2010) Proinflammatory cytokines in breast cancer: mechanisms of action and potential targets for therapeutics. Curr Drug Targets 11(9):1133–1146. doi:10.2174/138945010792006799

    Article  CAS  PubMed  Google Scholar 

  34. Romas E, Gillespie MT, Martin TJ (2002) Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone 30(2):340–346. doi:10.1016/S8756-3282(01)00682-2

    Article  CAS  PubMed  Google Scholar 

  35. Kimble RB, Bain S, Pacifici R (1997) The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J Bone Miner Res 12(6):935–941. doi:10.1359/jbmr.1997.12.6.935

    Article  CAS  PubMed  Google Scholar 

  36. Jiang F, Pang XY, Niu QS, Hua LM, Cheng M, Ji YH (2013) Activation of mammalian target of rapamycin mediates rat pain-related responses induced by BmK I, a sodium channel-specific modulator. Mol Pain 9:50. doi:10.1186/1744-8069-9-50

    Article  PubMed Central  PubMed  Google Scholar 

  37. Wacnik PW, Baker CM, Herron MJ, Kren BT, Blazar BR, Wilcox GL, Hordinsky MK, Beitz AJ, Ericson ME (2005) Tumor-induced mechanical hyperalgesia involves CGRP receptors and altered innervation and vascularization of DsRed2 fluorescent hindpaw tumors. Pain 115(1–2):95–106. doi:10.1016/j.pain.2005.02.024

    Article  CAS  PubMed  Google Scholar 

  38. Seong J, Park HC, Kim J, Kim UJ, Lee BW (2004) Radiation-induced alteration of pain-related signals in an animal model with bone invasion from cancer. Ann N Y Acad Sci 1030:179–186. doi:10.1196/annals.1329.023

    Article  CAS  PubMed  Google Scholar 

  39. Koltzenburg M, Wall PD, McMahon SB (1999) Does the right side know what the left is doing? Trends Neurosci 22(3):122–127. doi:10.1016/S0166-2236(98)01302-2

    Article  CAS  PubMed  Google Scholar 

  40. Woolf CJ (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152(3 Suppl):S2–S15. doi:10.1016/j.pain.2010.09.030

    Article  PubMed Central  PubMed  Google Scholar 

  41. Svensson CI, Brodin E (2010) Spinal astrocytes in pain processing: non-neuronal cells as therapeutic targets. Mol Interv 10(1):25–38. doi:10.1124/mi.10.1.6

    Article  CAS  PubMed  Google Scholar 

  42. Shen W, Hu XM, Liu YN, Han Y, Chen LP, Wang CC, Song C (2014) CXCL12 in astrocytes contributes to bone cancer pain through CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord. J Neuroinflamm 11:75. doi:10.1186/1742-2094-11-75

    Article  Google Scholar 

  43. Honore P, Rogers SD, Schwei MJ, Salak-Johnson JL, Luger NM, Sabino MC, Clohisy DR, Mantyh PW (2000) Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 98(3):585–598. doi:10.1016/s0306-4522(00)00110-x

    Article  CAS  PubMed  Google Scholar 

  44. Ji RR, Berta T, Nedergaard M (2013) Glia and pain: is chronic pain a gliopathy? Pain 154(Suppl 1):S10–S28. doi:10.1016/j.pain.2013.06.022

    Article  PubMed Central  PubMed  Google Scholar 

  45. Racz I, Nadal X, Alferink J, Baños JE, Rehnelt J, Martín M, Pintado B, Gutierrez-Adan A, Sanguino E, Manzanares J, Zimmer A, Maldonado R (2008) Crucial role of CB2 cannabinoid receptor in the regulation of central immune responses during neuropathic pain. J Neurosci 28(46):12125–12135. doi:10.1523/jneurosci.3400-08.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Yoon S-Y, Robinson CR, Zhang H, Dougherty PM (2013) Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. J Pain 14(2):205–214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Feng QX, Wang W, Feng XY, Mei XP, Zhu C, Liu ZC, Li YQ, Dou KF, Zhao QC (2010) Astrocytic activation in thoracic spinal cord contributes to persistent pain in rat model of chronic pancreatitis. Neuroscience 167(2):501–509

    Article  CAS  PubMed  Google Scholar 

  48. Kozai T, Yamanaka H, Dai Y, Obata K, Kobayashi K, Mashimo T, Noguchi K (2007) Tissue type plasminogen activator induced in rat dorsal horn astrocytes contributes to mechanical hypersensitivity following dorsal root injury. Glia 55(6):595–603

    Article  PubMed  Google Scholar 

  49. Obata H, Eisenach JC, Hussain H, Bynum T, Vincler M (2006) Spinal glial activation contributes to postoperative mechanical hypersensitivity in the rat. J Pain 7(11):816–822

    Article  CAS  PubMed  Google Scholar 

  50. Géranton SM, Jiménez-Díaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, Lumb BM, Hunt SP (2009) A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci 29(47):15017–15027. doi:10.1523/jneurosci.3451-09.2009

    Article  PubMed Central  PubMed  Google Scholar 

  51. Norsted Gregory E, Codeluppi S, Gregory JA, Steinauer J, Svensson CI (2010) Mammalian target of rapamycin in spinal cord neurons mediates hypersensitivity induced by peripheral inflammation. Neuroscience 169(3):1392–1402. doi:10.1016/j.neuroscience.2010.05.067

    Article  CAS  PubMed  Google Scholar 

  52. Codeluppi S, Svensson CI, Hefferan MP, Valencia F, Silldorff MD, Oshiro M, Marsala M, Pasquale EB (2009) The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord. J Neurosci 29(4):1093–1104. doi:10.1523/jneurosci.4103-08.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bowsher D (1988) Contralateral mirror-image pain following anterolateral cordotomy. Pain 33(1):63–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Peter Siegel for providing the 4T1 cells, Drs. Magali Millecamps, Osama Hussein, and Catherine Ferland-Legault for methodological and intellectual support, Drs. Monzur Murshed and Frank Rauch for advice on histomorphometry and McGill University undergraduate students Anita Ramachandran, Jingwen Chen, Katia Fox, and Robert Samberg for their help in performing the animal studies. This study was supported by the Cancer Research Society/Quebec Breast Cancer Foundation grant to LSS and SVK. DMA was supported by Ministry of Higher Education, Egypt. SVK holds Canada Research Chair in Osteoclast Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana V. Komarova.

Ethics declarations

Disclosure

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaziz, D.M., Stone, L.S. & Komarova, S.V. Localized experimental bone metastasis drives osteolysis and sensory hypersensitivity at distant non-tumor-bearing sites. Breast Cancer Res Treat 153, 9–20 (2015). https://doi.org/10.1007/s10549-015-3517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3517-x

Keywords

Navigation