Skip to main content

Advertisement

Log in

Circulating estrogens and estrogens within the breast among postmenopausal BRCA1/2 mutation carriers

  • Clinical Trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Accurately quantifying parent estrogens (PE) estrone (E1) and estradiol (E2) and their metabolites (EM) within breast tissue and serum may permit detailed investigations of their contributions to breast carcinogenesis among BRCA1/2 mutation carriers. We conducted a study of PE/EM in serum, nipple aspirate fluid (NAF), and ductal lavage supernatant (DLS) among postmenopausal BRCA1/2 mutation carriers. PE/EM (conjugated and unconjugated) were measured in paired serum/NAF (n = 22 women) and paired serum/DLS samples (n = 24 women) using quantitative liquid chromatography–tandem mass spectrometry (LC/MS/MS). The relationships between serum and tissue-specific PE/EM were measured using Pearson’s correlation coefficients. Conjugated forms of PE/EM constituted the majority of estrogen in serum (88 %), NAF (59 %) and DLS (69 %). PE/EM in NAF and serum were highly correlated [E1 (r = 0.97, p < 0.0001), E2 (r = 0.90, p < 0.0001) and estriol (E3) (r = 0.74, p < 0.0001)] as they were in DLS and serum [E1 (r = 0.92, p < 0.0001; E2 (r = 0.70, p = 0.0001; E3 (r = 0.67, p = 0.0004)]. Analyses of paired total estrogen values for NAF and serum, and DLS and serum yielded ratios of 0.22 (95 % CI 0.19–0.25) and 0.28 (95 % CI 0.24–0.32), respectively. This report is the first to employ LC/MS/MS to quantify PE/EM in novel breast tissue-derived biospecimens (i.e., NAF and DLS). We demonstrate that circulating PE and EM are strongly and positively correlated with tissue-specific PE and EM measured in NAF and DLS among postmenopausal BRCA1/2 mutation carriers. If confirmed, future etiologic studies could utilize the more readily obtainable serum hormone levels as a reliable surrogate measure of exposure at the tissue level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BRCA1/2:

Breast Cancer genes 1 and 2

PE:

Parent estrogen

E1:

Estrone

E2:

Estradiol

E3:

Estriol

EM:

Estrogen metabolites

TE:

Total estrogens, conjugated + unconjugated

NAF:

Nipple aspirate fluid

DLS:

Ductal lavage supernatant

LC/MS/MS:

Liquid chromatography–tandem mass spectrometry

DNA:

Deoxyribonucleic acid

ER:

Estrogen receptor

NCI:

National Cancer Institute

BIS:

Breast Imaging Study

MRI:

Magnetic resonance imaging

IRB:

Institutional Review Board

2-OHE1:

2-Hydroxyestrone

2-MeOE1:

2-Methoxyestrone

2-OHE2:

2-Hydroxyestradiol

2-MeOE2:

2-Methoxyestradiol

3-MeOE1:

2-Hydroxyestrone-3-methyl ether

4-OHE1:

4-Hydroxyestrone

4-MeOE1:

4-Methoxyestrone

4-MeOE2:

4-Methoxyestradiol

16α-OHE1:

16α-Hydroxyestrone

17-epiE3:

17-Epiestriol

16-ketoE2:

16-Ketoestradiol

16-epiE3:

16-Epiestriol

SI-EM:

Stable isotope-labeled estrogens

Estrone-13C6:

Estrone-13,14,15,16,17,18-13C6

17β-estradiol-13C6:

17β-Estradiol-13,14,15,16,17,18-13C6

d3-E3:

Estriol-2,4,17-d3

d5-2-OHE2:

2-Hydroxyestradiol-1,4,16,16,17-d5

d5-2-MeOE2:

2-Methoxyestradiol-1,4,16,16,17-d5

d3-16-epiE3:

16-Epiestriol-2,4,16-d3

ICC:

Intra-class correlation coefficients

BMI:

Body mass index

RRSO:

Risk reducing salpingo-oophorectomy

SD:

Standard deviation

RIA:

Radioimmunoassy

References

  1. Endogenous Hormones Breast Cancer Collaborative Group (2003) Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst 95(16):1218–1226

    Article  Google Scholar 

  2. Collaborative Group on Hormonal Factors in Breast Cancer (1997) Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Lancet 350(9084):1047–1059 Erratum appears in Lancet 1997 Nov 15; 350(9089):1484

    Article  Google Scholar 

  3. Schairer C, Lubin J, Troisi R, Sturgeon S, Brinton L, Hoover R (2000) Menopausal estrogen and estrogen–progestin replacement therapy and breast cancer risk. JAMA 283(4):485–491

    Article  CAS  PubMed  Google Scholar 

  4. Anderson GL, Limacher M, Assaf AR, Bassford T, Beresford SA, Black H, Bonds D, Brunner R, Brzyski R, Caan B et al (2004) Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the women’s health initiative randomized controlled trial. JAMA 291(14):1701–1712

    Article  CAS  PubMed  Google Scholar 

  5. Beral V, Banks E, Reeves G (2002) Evidence from randomised trials on the long-term effects of hormone replacement therapy. Lancet 360(9337):942–944

    Article  PubMed  Google Scholar 

  6. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA 288(3):321–333

    Article  CAS  PubMed  Google Scholar 

  7. Westerlind KC, Gibson KJ, Evans GL, Turner RT (2000) The catechol estrogen, 4-hydroxyestrone, has tissue-specific estrogen actions. J Endocrinol 167(2):281–287

    Article  CAS  PubMed  Google Scholar 

  8. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354(3):270–282

    Article  CAS  PubMed  Google Scholar 

  9. Harvell DM, Strecker TE, Tochacek M, Xie B, Pennington KL, McComb RD, Roy SK, Shull JD (2000) Rat strain-specific actions of 17beta-estradiol in the mammary gland: correlation between estrogen-induced lobuloalveolar hyperplasia and susceptibility to estrogen-induced mammary cancers. Proc Natl Acad Sci USA 97(6):2779–2784

    Article  CAS  PubMed  Google Scholar 

  10. Nandi S, Guzman RC, Yang J (1995) Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl Acad Sci USA 92(9):3650–3657

    Article  CAS  PubMed  Google Scholar 

  11. Turan VK, Sanchez RI, Li JJ, Li SA, Reuhl KR, Thomas PE, Conney AH, Gallo MA, Kauffman FC, Mesia-Vela S (2004) The effects of steroidal estrogens in ACI rat mammary carcinogenesis: 17beta-estradiol, 2-hydroxyestradiol, 4-hydroxyestradiol, 16alpha-hydroxyestradiol, and 4-hydroxyestrone. J Endocrinol 183(1):91–99

    Article  CAS  PubMed  Google Scholar 

  12. Yager JD, Liehr JG (1996) Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol 36:203–232

    Article  CAS  PubMed  Google Scholar 

  13. Yang X, Edgerton SM, Kosanke SD, Mason TL, Alvarez KM, Liu N, Chatterton RT, Liu B, Wang Q, Kim A (2003) Hormonal and dietary modulation of mammary carcinogenesis in mouse mammary tumor virus-c-erbB-2 transgenic mice. Cancer Res 63(10):2425–2433

    CAS  PubMed  Google Scholar 

  14. Yue W, Santen RJ, Wang JP, Li Y, Verderame MF, Bocchinfuso WP, Korach KS, Devanesan P, Todorovic R, Rogan EG (2003) Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis. J Steroid Biochem Mol Biol 86(3–5):477–486

    Article  CAS  PubMed  Google Scholar 

  15. Jefcoate CR, Liehr JG, Santen RJ, Sutter TR, Yager JD, Yue W, Santner SJ, Tekmal R, Demers L, Pauley R (2000) Tissue-specific synthesis and oxidative metabolism of estrogens. J Natl Cancer Inst Monogr 27:95–112

    Article  CAS  PubMed  Google Scholar 

  16. Cavalieri EL, Rogan EG (2011) Unbalanced metabolism of endogenous estrogens in the etiology and prevention of human cancer. J Steroid Biochem Mol Biol 125:169–180

    Article  CAS  PubMed  Google Scholar 

  17. Zhu BT, Conney AH (1998) Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 19(1):1–27

    Article  PubMed  Google Scholar 

  18. Fuhrman BJ, Schairer C, Gail MH, Boyd-Morin J, Xu X, Sue LY, Buys SS, Isaacs C, Keefer LK, Veenstra TD et al (2012) Estrogen metabolism and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 104(4):326–339

    Article  CAS  PubMed  Google Scholar 

  19. Falk R, Gentzschein E, Stanczyk F, Garcia-Closas M, Figueroa J, Ioffe O, Lissowska J, Brinton L, Sherman M (2012) Sex steroid hormone levels in breast adipose tissue and serum in postmenopausal women. Breast Cancer Res Treat 131(1):287–294

    Article  CAS  PubMed  Google Scholar 

  20. Taioli E, Im A, Xu X, Veenstra T, Ahrendt G, Garte S (2010) Comparison of estrogens and estrogen metabolites in human breast tissue and urine. Reprod Biol Endocrinol 8(1):93

    Article  PubMed Central  PubMed  Google Scholar 

  21. Castagnetta LAM, Granata OM, Traina A, Ravazzolo B, Amoroso M, Miele M, Bellavia V, Agostara B, Carruba G (2002) Tissue content of hydroxyestrogens in relation to survival of breast cancer patients. Clin Cancer Res 8(10):3146–3155

    CAS  PubMed  Google Scholar 

  22. Gaikwad NW, Yang L, Muti P, Meza JL, Pruthi S, Ingle JN, Rogan EG, Cavalieri EL (2008) The molecular etiology of breast cancer: evidence from biomarkers of risk. Int J Cancer 122(9):1949–1957

    Article  CAS  PubMed  Google Scholar 

  23. Yaghjyan L, Colditz (2011) Estrogens in the breast tissue: a systematic review. Cancer Causes Control 22(4):529–540

    Article  PubMed Central  PubMed  Google Scholar 

  24. Chatterton R Jr, Parker N, Habe-Evans M, Bryk M, Scholtens D, Khan S (2010) Breast ductal lavage for assessment of breast cancer biomarkers. Horm Cancer 1(4):197–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Berstein LM (2008) Endocrinology of the wild and mutant BRCA1 gene and types of hormonal carcinogenesis. Futur Oncol 4(1):23–39

    Article  CAS  Google Scholar 

  26. Lee EY (2008) Promotion of BRCA1-associated triple-negative breast cancer by ovarian hormones. Curr Opin Obstet Gynecol 20(1):68–73

    Article  PubMed  Google Scholar 

  27. Hu Y (2009) BRCA1, hormone, and tissue-specific tumor suppression. Int J Biol Sci 5(1):20–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat M-L, Gyorki DE, Ward T, Partanen A et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):907–913

    Article  CAS  PubMed  Google Scholar 

  29. Roy R, Chun J, Powell SN (2012) BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 12(1):68–78

    Article  CAS  Google Scholar 

  30. Chatterton RT Jr, Geiger AS, Gann PH, Khan SA (2003) Formation of estrone and estradiol from estrone sulfate by normal breast parenchymal tissue. J Steroid Biochem Mol Biol 86(2):159–166

    Article  CAS  PubMed  Google Scholar 

  31. Bhandare D, Nayar R, Bryk M, Hou N, Cohn R, Golewale N, Parker NP, Chatterton RT, Rademaker A, Khan SA (2005) Endocrine biomarkers in ductal lavage samples from women at high risk for breast cancer. Cancer Epidemiol Biomarkers Prev 14:2620–2627

    Article  CAS  PubMed  Google Scholar 

  32. Khan SA, Bhandare D, Chatterton RT Jr (2005) The local hormonal environment and related biomarkers in the normal breast. Endocr Relat Cancer 12(3):497–510

    Article  CAS  PubMed  Google Scholar 

  33. Ernster VL, Wrensch MR, Petrakis NL, King EB, Miike R, Murai J, Goodson WH 3rd, Siiteri PK (1987) Benign and malignant breast disease: initial study results of serum and breast fluid analyses of endogenous estrogens. J Natl Cancer Inst 79(5):949–960

    CAS  PubMed  Google Scholar 

  34. Chatterton RT Jr, Geiger AS, Mateo ET, Helenowski IB, Gann PH (2005) Comparison of hormone levels in nipple aspirate fluid of pre- and postmenopausal women: effect of oral contraceptives and hormone replacement. J Clin Endocrinol Metab 90(3):1686–1691

    Article  CAS  PubMed  Google Scholar 

  35. Ziegler RG, Faupel-Badger JM, Sue LY, Fuhrman BJ, Falk RT, Boyd-Morin J, Henderson MK, Hoover RN, Veenstra TD, Keefer LK (2010) A new approach to measuring estrogen exposure and metabolism in epidemiologic studies. J Steroid Biochem Mol Biol 121:538–545

    Article  CAS  PubMed  Google Scholar 

  36. Xu X, Roman JM, Issaq HJ, Keefer LK, Veenstra TD, Ziegler RG (2007) Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography tandem mass spectrometry. Anal Chem 79(20):7813–7821

    Article  CAS  PubMed  Google Scholar 

  37. Loud J, Beckjord E, Nichols K, Peters J, Giusti R, Greene M (2009) Tolerability of breast ductal lavage in women from families at high genetic risk of breast cancer. BMC Women’s Health 9(1):20

    Article  PubMed Central  PubMed  Google Scholar 

  38. Gierach GL, Loud JT, Chow CK, Prindiville SA, Eng-Wong J, Soballe PW, Giambartolomei C, Mai PL, Galbo CE, Nichols K et al (2010) Mammographic density does not differ between unaffected BRCA1/2 mutation carriers and women at low-to-average risk of breast cancer. Breast Cancer Res Treat 123(1):245–255

    Article  PubMed Central  PubMed  Google Scholar 

  39. Loud JT, Thiebaut ACM, Abati AD, Filie AC, Nichols K, Danforth D, Giusti R, Prindiville SA, Greene MH (2009) Ductal lavage in women from BRCA1/2 families: is there a future for ductal lavage in women at increased genetic risk of breast cancer? Cancer Epidemiol Biomark Prev 18(4):1243–1251

    Article  CAS  Google Scholar 

  40. Dooley WC, Ljung BM, Veronesi U, Cazzaniga M, Elledge RM, O’Shaughnessy JA, Kuerer HM, Hung DT, Khan SA, Phillips RF et al (2001) Ductal lavage for detection of cellular atypia in women at high risk of breast cancer. J Natl Cancer Inst 93(21):1624–1632

    Article  CAS  PubMed  Google Scholar 

  41. Chatterton RT, Khan SA, Heinz R, Ivancic D, Lee O (2010) Patterns of sex steroid hormones in nipple aspirate fluid during the menstrual cycle and after menopause in relation to serum concentrations. Cancer Epidemiol Biomark Prev 19(1):275–279

    Article  CAS  Google Scholar 

  42. Faupel-Badger JM, Fuhrman BJ, Xu X, Falk RT, Keefer LK, Veenstra TD, Hoover RN, Ziegler RG (2010) Comparison of liquid chromatography–tandem mass spectrometry, RIA, and ELISA methods for measurement of urinary estrogens. Cancer Epidemiol Biomark Prev 19(1):292–300

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Breast Imaging Study (NCI Protocol #01-C-0009). We wish to thank Ruthann Giusti, Christine Mueller and Phuong L. Mai for clinical support; Phuong L. Mai for reviewing the manuscript; Nicole Dupree, Jason Hu, Beth Mittl, and Usha Singh for their help in data preparation. Special thanks to all our study participants; without whose cooperation this study could not have been done. This project was supported by the Intramural Research Program of the National Cancer Institute, by contracts NO2-CP-11019-50 and NO2-CP-65504-50 with Westat, Inc. and by a Molecular Epidemiology Award from the Division of Cancer Epidemiology and Genetics, National Cancer Institute. This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract HHSN261200800001E. By acceptance of this article, the publisher or recipient acknowledges the right of the United States Government to retain a nonexclusive, royalty-free license and to any copyright covering the article. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organization imply endorsement by the United States Government.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer T. Loud or Mark H. Greene.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loud, J.T., Gierach, G.L., Veenstra, T.D. et al. Circulating estrogens and estrogens within the breast among postmenopausal BRCA1/2 mutation carriers. Breast Cancer Res Treat 143, 517–529 (2014). https://doi.org/10.1007/s10549-013-2821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2821-6

Keywords

Navigation