Skip to main content

Advertisement

Log in

The effect of atmospheric particulate matter on survival of breast cancer among US females

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Short-term effects of ambient particulate matter (PM) on cardiopulmonary morbidity and mortality have been consistently documented. However, no study has investigated its long-term effects on breast cancer survival. We selected all female breast cancer cases (n = 255,128) available in the California Surveillance Epidemiology and End Results cancer data. These cases were linked to 1999–2009 California county-level PM daily monitoring data. We examined the effect of PM on breast cancer survival. Results from Kaplan–Meier survival analysis show that female breast cancer cases living in areas with higher levels of PM10 and PM2.5 had a significant shorter survival than those living in areas with lower exposures (p < 0.0001). The results from marginal cox proportional hazards models suggest that exposure to higher PM10 (HR 1.13, 95 % CI 1.02–1.25, per 10 μg/m3) or PM2.5 (HR 1.86, 95 % CI 1.12–3.10, per 5 μg/m3) was significantly associated with early mortality among female breast cancer cases after adjusting for individual-level covariates such as demographic factors, cancer stage and year diagnosed, and county-level covariates such as socioeconomic status and accessibility to medical resources. Interactions between cancer stage and PM were also observed; the effect of PM on survival was more pronounced among individuals diagnosed with early stage cancers. This study suggests that exposure to high levels of PM may have deleterious effects on the length of survival from breast cancer, particularly among women diagnosed with early stage cancers. The findings from this study warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

EPA:

U.S. environmental protection agency

HR:

Hazard ratio

ICD-O-3:

International classification of disease for oncology, third edition

PM:

Particulate matter

PM10 :

Particles less than 10 μm in diameter

PM2.5 :

Particles less than 2.5 μm in diameter

SEER:

Surveillance Epidemiology and End Results

References

  1. Society AC (2012) Cancer facts and figures 2012. American Cancer Society, Atlanta

    Google Scholar 

  2. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S et al (2006) Race, breast cancer subtypes, and survival in the Carolina breast cancer study. JAMA J Am Med Assoc 295(21):2492–2502

    Article  CAS  Google Scholar 

  3. Braithwaite D, Izano M, Moore DH, Kwan ML, Tammemagi MC, Hiatt RA, Kerlikowske K, Kroenke CH, Sweeney C, Habel L et al (2012) Smoking and survival after breast cancer diagnosis: a prospective observational study and systematic review. Breast Cancer Res Treat 136(2):521–533

    Article  PubMed  Google Scholar 

  4. Grant WB (2009) Air pollution in relation to U.S. cancer mortality rates: an ecological study; likely role of carbonaceous aerosols and polycyclic aromatic hydrocarbons. Anticancer Res 29(9):3537–3545

    PubMed  CAS  Google Scholar 

  5. Chameides WL (2010) Environmental factors in cancer: focus on air pollution. Rev Environ Health 25(1):17–22

    Article  PubMed  Google Scholar 

  6. Eitan O, Yuval, Barchana M, Dubnov J, Linn S, Carmel Y, Broday DM (2010) Spatial analysis of air pollution and cancer incidence rates in Haifa Bay, Israel. Sci Total Environ 408(20):4429–4439

    Article  PubMed  CAS  Google Scholar 

  7. Raaschou-Nielsen O, Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Sorensen M, Hansen J, Loft S, Overvad K, Tjonneland A (2011) Air pollution from traffic and cancer incidence: a Danish cohort study. Environ Health 10:67

    Article  PubMed  CAS  Google Scholar 

  8. Chen F, Bina WF (2012) Correlation of white female breast cancer incidence trends with nitrogen dioxide emission levels and motor vehicle density patterns. Breast Cancer Res Treat 132(1):327–333

    Article  PubMed  Google Scholar 

  9. Wei Y, Davis J, Bina WF (2012) Ambient air pollution is associated with the increased incidence of breast cancer in US. Int J Environ Health Res 22(1):12–21

    Article  PubMed  Google Scholar 

  10. TRI National Analysis (2011) http://www.epa.gov/tri/tridata/tri11/nationalanalysis/index.htm

  11. Boffetta P, Nyberg F (2003) Contribution of environmental factors to cancer risk. Br Med Bull 68:71–94

    Article  PubMed  CAS  Google Scholar 

  12. van Berlo D, Hullmann M, Schins RP (2012) Toxicology of ambient particulate matter. EXS 101:165–217

    PubMed  Google Scholar 

  13. Yanagi Y, Assuncao JV, Barrozo LV (2012) The impact of atmospheric particulate matter on cancer incidence and mortality in the city of Sao Paulo, Brazil. Cad de Saude Publica/Ministerio da Saude, Fundacao Oswaldo Cruz, Escola Nacional de Saude Publica 28(9):1737–1748

    Google Scholar 

  14. Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175

    Article  PubMed  CAS  Google Scholar 

  15. Lee EWL, Amato D (1992) Cox-type regression analysis for large numbers of small groups of correlated failure time observations. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  16. Lin DY (1994) Cox regression analysis of multivariate failure time data: the marginal approach. Stat Med 13(21):2233–2247

    Article  PubMed  CAS  Google Scholar 

  17. Zeger SL, Dominici F, McDermott A, Samet JM (2008) Mortality in the Medicare population and chronic exposure to fine particulate air pollution in urban centers (2000–2005). Environ Health Perspect 116(12):1614–1619

    Article  PubMed  Google Scholar 

  18. Sarnat JA, Schwartz J, Suh HH (2001) Fine particulate air pollution and mortality in 20 U.S. cities. N Engl J Med 344(16):1253–1254

    Article  PubMed  CAS  Google Scholar 

  19. Puett RC, Hart JE, Suh H, Mittleman M, Laden F (2011) Particulate matter exposures, mortality, and cardiovascular disease in the health professionals follow-up study. Environ Health Perspect 119(8):1130–1135

    Article  PubMed  Google Scholar 

  20. Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA J Am Med Assoc 287(9):1132–1141

    Article  CAS  Google Scholar 

  21. Levy JI, Hammitt JK, Spengler JD (2000) Estimating the mortality impacts of particulate matter: what can be learned from between-study variability? Environ Health Perspect 108(2):109–117

    Article  PubMed  CAS  Google Scholar 

  22. Hung L-J, Tsai S-S, Chen P-S, Yang Y-H, Liou S-H, Wu T-N, Yang C-Y (2012) Traffic air pollution and risk of death from breast cancer in Taiwan: fine particulate matter (PM2.5) as a proxy marker. Aerosol Air Qual Res 12:275–282

    CAS  Google Scholar 

  23. Lodovici M, Bigagli E (2011) Oxidative stress and air pollution exposure. J Toxicol 2011:487074

    PubMed  Google Scholar 

  24. Pope CA 3rd (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108(Suppl 4):713–723

    Article  PubMed  CAS  Google Scholar 

  25. KA Dobson, JL Freudenheim, PG Shields, MH Tao, C Marian, J Nie, SB Edge, JS Winston, M Trevisan, MR Bonner (2011) Air pollution exposure and promoter methylation of E-cadherin, p16, and RAR-β in breast cancer tumors from cases in the WEB study. In: Proceedings of the 102nd annual meeting of the American association for cancer research. Cancer Research, Orlando, 2–6 April 2011

  26. Moore CJ, Tricomi WA, Gould MN (1986) Interspecies comparison of polycyclic aromatic hydrocarbon metabolism in human and rat mammary epithelial cells. Cancer Res 46(10):4946–4952

    PubMed  CAS  Google Scholar 

  27. Mane SS, Purnell DM, Hsu IC (1990) Genotoxic effects of five polycyclic aromatic hydrocarbons in human and rat mammary epithelial cells. Environ Mol Mutagen 15(2):78–82

    Article  PubMed  CAS  Google Scholar 

  28. Gammon MD, Santella RM, Neugut AI, Eng SM, Teitelbaum SL, Paykin A, Levin B, Terry MB, Young TL, Wang LW et al (2002) Environmental toxins and breast cancer on Long Island. I. Polycyclic aromatic hydrocarbon DNA adducts. Cancer Epidemiol Biomark Prev 11(8):677–685

    CAS  Google Scholar 

  29. Gammon MD, Sagiv SK, Eng SM, Shantakumar S, Gaudet MM, Teitelbaum SL, Britton JA, Terry MB, Wang LW, Wang Q et al (2004) Polycyclic aromatic hydrocarbon–DNA adducts and breast cancer: a pooled analysis. Arch Environ Health 59(12):640–649

    Article  PubMed  CAS  Google Scholar 

  30. Li D, Wang M, Dhingra K, Hittelman WN (1996) Aromatic DNA adducts in adjacent tissues of breast cancer patients: clues to breast cancer etiology. Cancer Res 56(2):287–293

    PubMed  CAS  Google Scholar 

  31. Rundle A, Tang D, Hibshoosh H, Estabrook A, Schnabel F, Cao W, Grumet S, Perera FP (2000) The relationship between genetic damage from polycyclic aromatic hydrocarbons in breast tissue and breast cancer. Carcinogenesis 21(7):1281–1289

    Article  PubMed  CAS  Google Scholar 

  32. Chen ST, Lin CC, Liu YS, Lin C, Hung PT, Jao CW, Lin PH (2013) Airborne particulate collected from central Taiwan induces DNA strand breaks, poly (ADP-ribose) polymerase-1 activation, and estrogen-disrupting activity in human breast carcinoma cell lines. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 48(2):173–181

    CAS  Google Scholar 

  33. Health USDoHaHSOoWs (2010) Early-stage breast cancer treatment fact sheet. U.S. Department of Health and Human Services, Washington, DC

    Google Scholar 

  34. Sagiv SK, Gaudet MM, Eng SM, Abrahamson PE, Shantakumar S, Teitelbaum SL, Bell P, Thomas JA, Neugut AI, Santella RM et al (2009) Polycyclic aromatic hydrocarbon-DNA adducts and survival among women with breast cancer. Environ Res 109(3):287–291

    Article  PubMed  CAS  Google Scholar 

  35. Petro-Nustas W (2002) Health-related behaviors and lifestyle factors of patients with breast cancer. Cancer Nurs 25(3):219–229

    Article  PubMed  Google Scholar 

  36. Pinto BM, Trunzo JJ (2005) Health behaviors during and after a cancer diagnosis. Cancer 104(11 Suppl):2614–2623

    Article  PubMed  Google Scholar 

Download references

Disclosure

There are no financial disclosures to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Dailey, A.B., Kan, H. et al. The effect of atmospheric particulate matter on survival of breast cancer among US females. Breast Cancer Res Treat 139, 217–226 (2013). https://doi.org/10.1007/s10549-013-2527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2527-9

Keywords

Navigation