Skip to main content

Advertisement

Log in

Nonsense mutation p.Q548X in BLM, the gene mutated in Bloom’s syndrome, is associated with breast cancer in Slavic populations

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Bloom’s syndrome is a rare autosomal recessive chromosomal instability disorder with a high incidence of various types of neoplasia, including breast cancer. Whether monoallelic BLM mutations predispose to breast cancer has been a long-standing question. A nonsense mutation, p.Q548X, has recently been associated with an increased risk for breast cancer in a Russian case–control study. In the present work, we have investigated the prevalence of this Slavic BLM founder mutation in a total of 3,188 breast cancer cases and 2,458 controls from Bashkortostan, Belarus, Ukraine, and Kazakhstan. The p.Q548X allele was most frequent in Russian patients (0.8 %) but was also prevalent in Byelorussian and Ukrainian patients (0.5 and 0.6 %, respectively), whereas it was absent in Altaic or other non-European subpopulations. In a combined analysis of our four case–control series, the p.Q548X mutation was significantly associated with breast cancer (Mantel–Haenszel OR 5.1, 95 % CI 1.2; 21.9, p = 0.03). A meta-analysis with the previous study from the St. Petersburg area corroborates the association (OR 5.7, 95 % CI 2.0; 15.9, p = 3.7 × 10−4). A meta-analysis for all published truncating mutations further supports the association of BLM with breast cancer, with an estimated two- to five-fold increase in risk (OR 3.3, 95 %CI 1.9; 5.6, p = 1.9 × 10−5). Altogether, these data indicate that BLM is not only a gene for Bloom’s syndrome but also might represent a breast cancer susceptibility gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turnbull C, Rahman N (2008) Genetic predisposition to breast cancer: past, present, and future. Annu Rev Genomics Hum Genet 9:321–345

    Article  PubMed  CAS  Google Scholar 

  2. Campeau PM, Foulkes WD, Tischkowitz MD (2008) Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet 124:31–42

    Article  PubMed  CAS  Google Scholar 

  3. Bogdanova N, Dörk T (2012) Molecular genetics of breast and ovarian cancer. Balkan J Med Genet 15(1):75–80

    CAS  Google Scholar 

  4. Ellis NA, German J (1996) Molecular genetics of Bloom’s syndrome. Hum Mol Genet 5:1457–1463

    PubMed  CAS  Google Scholar 

  5. German J (1993) Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine 72:393–406

    Article  PubMed  CAS  Google Scholar 

  6. German J, Archibald R, Bloom D (1965) Chromosomal breakage in a rare and probably genetically determined syndrome of man. Science 148:506–507

    Article  PubMed  CAS  Google Scholar 

  7. Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, Proytcheva M et al (1995) The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83:655–666

    Article  PubMed  CAS  Google Scholar 

  8. Ababou M, Dutertre S, Lécluse Y, Onclercq R, Chatton B, Amor-Guéret M (2000) ATM-dependent phosphorylation and accumulation of endogenous BLM protein in response to ionizing radiation. Oncogene 19:5955–5963

    Article  PubMed  CAS  Google Scholar 

  9. Bischof O, Kim SH, Irving J, Beresten S, Ellis NA, Campisi J (2001) Regulation and localization of the Bloom syndrome protein in response to DNA damage. J Cell Biol 153:367–380

    Article  PubMed  CAS  Google Scholar 

  10. Beamish H, Kedar P, Kaneko H, Chen P, Fukao T, Peng C, Beresten S, Gueven N, Purdie D, Lees-Miller S, Ellis N, Kondo N, Lavin MF (2002) Functional link between BLM defective in Bloom’s syndrome and the ataxia-telangiectasia-mutated protein, ATM. J Biol Chem 277:30515–30523

    Article  PubMed  CAS  Google Scholar 

  11. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939

    PubMed  CAS  Google Scholar 

  12. Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL, Wyman C, Modrich P, Kowalczykowski SC (2011) BLM–DNA2–RPA–MRN and EXO1–BLM–RPA–MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 25:350–362

    Article  PubMed  CAS  Google Scholar 

  13. Wu L, Davies SL, Levitt NC, Hickson ID (2001) Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem 276:19375–19381

    Article  PubMed  CAS  Google Scholar 

  14. Braybrooke JP, Li JL, Wu L, Caple F, Benson FE, Hickson ID (2003) Functional interaction between the Bloom’s syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D). J Biol Chem 278:48357–48366

    Article  PubMed  CAS  Google Scholar 

  15. Ouyang KJ, Woo LL, Zhu J, Huo D, Matunis MJ, Ellis NA (2009) SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLoS Biol 7(12):e1000252

    Article  PubMed  Google Scholar 

  16. Suhasini AN, Brosh RM Jr (2012) Fanconi anemia and Bloom’s syndrome crosstalk through FANCJ–BLM helicase interaction. Trends Genet 28:7–13

    Article  PubMed  CAS  Google Scholar 

  17. Chan KL, North PS, Hickson ID (2007) BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J 26(14):3397–3409

    Article  PubMed  CAS  Google Scholar 

  18. German J, Bloom D, Passarge E, Fried K, Goodman RM, Katzenellenbogen I, Laron Z et al (1977) Bloom’s syndrome. VI. The disorder in Israel and an estimation of the gene frequency in the Ashkenazim. Am J Hum Genet 29:553–562

    PubMed  CAS  Google Scholar 

  19. Gruber SB, Ellis NA, Scott KK, Almog R, Kolachana P, Bonner JD, Kirchhoff T, Tomsho LP, Nafa K, Pierce H, Low M, Satagopan J, Rennert H, Huang H, Greenson JK, Groden J, Rapaport B, Shia J, Johnson S, Gregersen PK, Harris CC, Boyd J, Rennert G, Offit K (2002) BLM heterozygosity and the risk of colorectal cancer. Science 297:2013

    Article  PubMed  CAS  Google Scholar 

  20. Cleary SP, Zhang W, Di Nicola N, Aronson M, Aube J, Steinman A, Haddad R, Redston M, Gallinger S, Narod SA, Gryfe R (2003) Heterozygosity for the BLM(Ash) mutation and cancer risk. Cancer Res 63:1769–1771

    PubMed  CAS  Google Scholar 

  21. Zauber NP, Sabbath-Solitare M, Marotta S, Zauber AG, Foulkes W, Chan M, Turner F, Bishop DT (2005) Clinical and genetic findings in an Ashkenazi Jewish population with colorectal neoplasms. Cancer 104:719–729

    Article  PubMed  CAS  Google Scholar 

  22. Sokolenko AP, Iyevleva AG, Preobrazhenskaya EV, Mitiushkina NV, Abysheva SN, Suspitsin EN, Kuligina ESh, Gorodnova TV, Pfeifer W, Togo AV, Turkevich EA, Ivantsov AO, Voskresenskiy DV, Dolmatov GD, Bit-Sava EM, Matsko DE, Semiglazov VF, Fichtner I, Larionov AA, Kuznetsov SG, Antoniou AC, Imyanitov EN (2012) High prevalence and breast cancer predisposing role of the BLM c.1642 C > T (Q548X) mutation in Russia. Int J Cancer 130:2867–2873

    Article  PubMed  CAS  Google Scholar 

  23. Bogdanova N, Cybulski C, Bermisheva M, Datsyuk I, Yamini P, Hillemanns P, Antonenkova NN, Khusnutdinova E, Lubinski J, Dörk T (2009) A nonsense mutation (E1978X) in the ATM gene is associated with breast cancer. Breast Cancer Res Treat 118:207–211

    Article  PubMed  CAS  Google Scholar 

  24. Bogdanova NV, Antonenkova NN, Rogov YI, Karstens JH, Hillemanns P, Dörk T (2010) High frequency and allele-specific differences of BRCA1 founder mutations in breast cancer and ovarian cancer patients from Belarus. Clin Genet 78:364–372

    Article  PubMed  CAS  Google Scholar 

  25. Ghoussaini M, Fletcher O, Michailidou K, Turnbull C, Schmidt MK, Dicks E, Dennis J et al (2012) Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet 44:312–318

    Article  PubMed  CAS  Google Scholar 

  26. Bogdanova N, Feshchenko S, Cybulski C, Dörk T (2007) CHEK2 mutation and hereditary breast cancer. J Clin Oncol 25(19):e26

    Article  PubMed  Google Scholar 

  27. Koren-Michowitz M, Friedman E, Gershoni-Baruch R, Brok-Simoni F, Patael Y, Rechavi G, Amariglio N (2005) Coinheritance of BRCA1 and BRCA2 mutations with Fanconi anemia and Bloom syndrome mutations in Ashkenazi Jewish population: possible role in risk modification for cancer development. Am J Hematol 78:203–206

    Article  PubMed  CAS  Google Scholar 

  28. Thompson ER, Doyle MA, Ryland GL, Rowley SM, Choong DY, Tothill RW, Thorne H, kConFab, Barnes DR, Li J, Ellul J, Philip GK, Antill YC, James PA, Trainer AH, Mitchell G, Campbell IG (2012) Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles. PLoS Genet 8(9):e1002894

    Article  PubMed  CAS  Google Scholar 

  29. German J (1997) Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet 93:100–106

    Article  PubMed  CAS  Google Scholar 

  30. Masmoudi A, Marrakchi S, Kamoun H, Chaaben H, Ben Salah G, Ben Salah R, Fakhfakh F, Zahaf A, Turki H (2012) Clinical and laboratory findings in 8 patients with Bloom’s syndrome. J Dermatol Case Rep 6:29–33

    Article  PubMed  Google Scholar 

  31. Baris HN, Kedar I, Halpern GJ, Shohat T, Magal N, Ludman MD, Shohat M (2007) Prevalence of breast and colorectal cancer in Ashkenazi Jewish carriers of Fanconi anemia and Bloom syndrome. Isr Med Assoc J 9:847–850

    PubMed  CAS  Google Scholar 

  32. Ellis NA, Offit K (2012) Heterozygous mutations in DNA repair genes and hereditary breast cancer: a question of power. PLoS Genet 8(9):e1003008

    Article  PubMed  CAS  Google Scholar 

  33. Górski B, Cybulski C, Huzarski T, Byrski T, Gronwald J, Jakubowska A, Stawicka M, Gozdecka-Grodecka S, Szwiec M, Urbański K, Mituś J, Marczyk E, Dziuba J, Wandzel P, Surdyka D, Haus O, Janiszewska H, Debniak T, Tołoczko-Grabarek A, Medrek K, Masojć B, Mierzejewski M, Kowalska E, Narod SA, Lubiński J (2005) Breast cancer predisposing alleles in Poland. Breast Cancer Res Treat 92:19–24

    Article  PubMed  Google Scholar 

  34. Bogdanova N, Feshchenko S, Schürmann P, Waltes R, Wieland B, Hillemanns P, Rogov YI, Dammann O, Bremer M, Karstens JH, Sohn C, Varon R, Dörk T (2008) Nijmegen Breakage Syndrome mutations and risk of breast cancer. Int J Cancer 122:802–806

    Article  PubMed  CAS  Google Scholar 

  35. Heidemann S, Fischer C, Engel C, Fischer B, Harder L, Schlegelberger B, Niederacher D, Goecke TO, Doelken SC, Dikow N, Jonat W, Morlot S, Schmutzler RC, Arnold NK (2012) Double heterozygosity for mutations in BRCA1 and BRCA2 in German breast cancer patients: implications on test strategies and clinical management. Breast Cancer Res Treat 134:1229–1239

    Article  PubMed  CAS  Google Scholar 

  36. Pern F, Bogdanova N, Schürmann P, Lin M, Ay A, Länger F, Hillemanns P, Christiansen H, Park-Simon TW, Dörk T (2012) Mutation analysis of BRCA1, BRCA2, PALB2 and BRD7 in a hospital-based series of German patients with triple-negative breast cancer. PLoS One 7(10):e47993

    Article  PubMed  CAS  Google Scholar 

  37. Turnbull C, Seal S, Renwick A, Warren-Perry M, Hughes D, Elliott A, Pernet D, Peock S, Adlard JW, Barwell J, Berg J, Brady AF, Brewer C, Brice G, Chapman C, Cook J, Davidson R, Donaldson A, Douglas F, Greenhalgh L, Henderson A, Izatt L, Kumar A, Lalloo F, Miedzybrodzka Z, Morrison PJ, Paterson J, Porteous M, Rogers MT, Shanley S, Walker L, Breast Cancer Susceptibility Collaboration (UK), EMBRACE, Ahmed M, Eccles D, Evans DG, Donnelly P, Easton DF, Stratton MR, Rahman N (2012) Gene-gene interactions in breast cancer susceptibility. Hum Mol Genet 21:958–962

    Article  PubMed  CAS  Google Scholar 

  38. Hoadley KA, Xue Y, Ling C, Takata M, Wang W, Keck JL (2012) Defining the molecular interface that connects the Fanconi anemia protein FANCM to the Bloom syndrome dissolvasome. Proc Natl Acad Sci USA 109:4437–4442

    Article  PubMed  CAS  Google Scholar 

  39. Luo G, Santoro IM, McDaniel LD, Nishijima I, Mills M, Youssoufian H, Vogel H, Schultz RA, Bradley A (2000) Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat Genet 26:424–429

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the patients and healthy volunteers for their participation and the clinicians at hospitals in Belarus, Kazakhstan, Russia, and Ukraine for their support of this work. We cordially thank Evgeny Imyanitov and his group for providing us with a positive control for this study. D.P. was supported by travel funds from the German Ministry of Education and Research and by grant 12-04-97026 of the Russian Foundation for Basic Research. N.B. was supported by an intramural Hannelore-Munke stipend at Hannover Medical School. I.D. was supported by a German Academic Exchange Program (DAAD). The Hannover laboratory was furthermore supported by the Rudolf Bartling Foundation.

Ethical Standards

The experiments in the present study comply with the current laws of the country in which they were performed.

Conflict of interest

None of the authors declares a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Dörk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2012_2357_MOESM1_ESM.tif

Supplementary material 1 (TIFF 269 kb): Identification of the BLM mutation p.Q548X by means of high-resolution melting analysis (top) and direct sequencing (bottom). Top: Normalized fluorescence graph for high-resolution melting analysis of the mutant amplicon carrying the p.Q548X mutation in comparison with wildtype controls. Bottom: Direct sequencing of exon 7 in the BLM gene, sense strand, in a sample with heterozygosity for mutation p.Q548X (C/T, asterisk)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokofyeva, D., Bogdanova, N., Dubrowinskaja, N. et al. Nonsense mutation p.Q548X in BLM, the gene mutated in Bloom’s syndrome, is associated with breast cancer in Slavic populations. Breast Cancer Res Treat 137, 533–539 (2013). https://doi.org/10.1007/s10549-012-2357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2357-1

Keywords

Navigation