Skip to main content
Log in

Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography—EEG) and hemodynamic (functional near infrared spectroscopy—fNIRS; and functional magnetic resonance imaging—fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abler B, Roebroeck A, Goebel R, Höse A, Schönfeldt-Lecuona C, Hole G, Walter H (2006) Investigating directed influences between activated brain areas in a motor-response task using fMRI. Magn Reson Imaging 24:181–185. doi:10.1016/j.mri.2005.10.022

    Article  PubMed  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Anwar AR et al (2012) Directionality analysis on functional magnetic resonance imaging during motor task using Granger Causality. In: Engineering in medicine and biology society (EMBC), 2012 Annual international conference of the IEEE, Aug. 28 2012–Sep 1 2012, pp 2287–2290. doi:10.1109/EMBC.2012.6346419

  • Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. NeuroImage 8:229–239. doi:10.1006/nimg.1998.0361

    Article  CAS  PubMed  Google Scholar 

  • Allen PJ, Josephs O, Turner R (2000) A Method for Removing Imaging Artifact from Continuous EEG Recorded during. Funct MRI NeuroImage 12:230–239. doi:10.1006/nimg.2000.0599

    Article  CAS  Google Scholar 

  • Amjad AM, Halliday DM, Rosenberg JR, Conway BA (1997) An extended difference of coherence test for comparing and combining several independent coherence estimates: theory and application to the study of motor units and physiological tremor. J Neurosci Methods 73:69–79

    Article  CAS  PubMed  Google Scholar 

  • Andres FG, Gerloff C (1999) Coherence of sequential movements and motor learning. J Clin Neurophysiol 16:520–527

    Article  CAS  PubMed  Google Scholar 

  • Anwar AR et al (2013) Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks. Conf Proc IEEE Eng Med Biol Soc 2013:2628–2631. doi:10.1109/embc.2013.6610079

    PubMed  Google Scholar 

  • Anwar AR et al (2014) Multi-modal causality analysis of eyes-open and eyes-closed data from simultaneously recorded EEG and MEG. Conf Proc IEEE Eng Med Biol Soc 2014:2825–2828. doi:10.1109/embc.2014.6944211

    PubMed  Google Scholar 

  • Astolfi L, Babiloni F (2007) Estimation of cortical connectivity in humans: advanced signal processing techniques. Estimation of cortical connectivity in humans: advanced signal processing techniques. Morgan & Claypool, San Rafael. doi:10.2200/S00094ED1V01Y200708BME013

    Google Scholar 

  • Astolfi L, Cichocki A, Babiloni F (2009) NeuroMath: advanced methods for the estimation of human brain activity and connectivity. Comput Intell Neurosci. doi:10.1155/2009/275638

    Google Scholar 

  • Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625. doi:10.1016/S0166-2236(02)02264-6

    Article  CAS  PubMed  Google Scholar 

  • Baccalá LA, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84:463–474. doi:10.1007/PL00007990

    Article  PubMed  Google Scholar 

  • Baccalá LA, Sameshima K, Takahashi DY (2007) Generalized partial directed coherence. In: 2007 15th International conference on digital signal processing, 1–4 July 2007, pp 163–166. doi:10.1109/ICDSP.2007.4288544

  • Bajaj S, Drake D, Butler AJ, Dhamala M (2014) Oscillatory motor network activity during rest and movement: an fNIRS study. Front Syst Neurosci 8:13. doi:10.3389/fnsys.2014.00013

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnett L, Seth AK (2011) Behaviour of Granger causality under filtering: theoretical invariance and practical application. J Neurosci Methods 201:404–419. doi:10.1016/j.jneumeth.2011.08.010

    Article  PubMed  Google Scholar 

  • Barrett AB, Barnett L (2013) Granger causality is designed to measure effect, not mechanism. Front Neuroinformatics 7:6. doi:10.3389/fninf.2013.00006

    Article  Google Scholar 

  • Bestmann S et al (2008) Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb Cortex 18:1281–1291. doi:10.1093/cercor/bhm159

    Article  PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  • Blinowska KJ, Malinowski M (1991) Non-linear and linear forecasting of the EEG time series. Biol Cybern 66:159–165

    Article  CAS  PubMed  Google Scholar 

  • Büchel C, Friston KJ (1997) Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex 7:768–778. doi:10.1093/cercor/7.8.768

    Article  PubMed  Google Scholar 

  • Cohen D (1968) Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science (New York, NY) 161:784–786

    Article  CAS  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716

    Article  CAS  PubMed  Google Scholar 

  • Ewald A, Marzetti L, Zappasodi F, Meinecke FC, Nolte G (2012) Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space. Neuroimage 60:476–488. doi:10.1016/j.neuroimage.2011.11.084

    Article  PubMed  Google Scholar 

  • Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63:921–935

    Article  PubMed  Google Scholar 

  • Florin E, Gross J, Pfeifer J, Fink GR, Timmermann L (2010) The effect of filtering on Granger causality based multivariate causality measures. NeuroImage 50:577–588

    Article  PubMed  Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19:1273–1302. doi:10.1016/S1053-8119(03)00202-7

    Article  CAS  PubMed  Google Scholar 

  • Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712

    Article  PubMed  Google Scholar 

  • Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Friston KJ (2007) Dynamic causal modelling of evoked potentials: a reproducibility study. Neuroimage 36:571–580. doi:10.1016/j.neuroimage.2007.03.014

    Article  PubMed  PubMed Central  Google Scholar 

  • Govindan RB, Raethjen J, Kopper F, Claussen JC, Deuschl G (2005) Estimation of time delay by coherence analysis. Phys A 350:277–295

    Article  Google Scholar 

  • Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438. doi:10.2307/1912791

    Article  Google Scholar 

  • Gratton G, Coles MGH, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468–484

    Article  CAS  PubMed  Google Scholar 

  • Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc Natl Acad Sci USA 98:694–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF (1995) A framework for the analysis of mixed time series/point process data–theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol 64:237–278

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Galea JM, Casula EP, Falkai P, Bestmann S, Rothwell JC (2013) Muscle and timing-specific functional connectivity between the dorsolateral prefrontal cortex and the primary motor cortex. J Cogn Neurosci 25:558–570. doi:10.1162/jocn_a_00338

    Article  PubMed  Google Scholar 

  • Hassan M, Dufor O, Merlet I, Berrou C, Wendling F (2014) EEG source connectivity analysis: from dense array recordings to brain networks. PloS One 9:e105041. doi:10.1371/journal.pone.0105041

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang K, Velanova K, Luna B (2010) Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: a functional magnetic resonance imaging effective connectivity study. J Neurosci 30:15535–15545. doi:10.1523/JNEUROSCI.2825-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Im C-H, Jung Y-J, Lee S, Koh D, Kim D-W, Kim B-M (2010) Estimation of directional coupling between cortical areas using Near-Infrared Spectroscopy (NIRS). Opt Express 18:5730–5739

    Article  CAS  PubMed  Google Scholar 

  • Japaridze N et al (2013) Neuronal networks in west syndrome as revealed by source analysis and renormalized partial directed coherence. Brain Topogr 26:157–170. doi:10.1007/s10548-012-0245-y

    Article  PubMed  Google Scholar 

  • Journee HL (2007) Demodulation of amplitude modulated noise: a mathematical evaluation of a demodulator for pathological tremor. In: EMG’s IEEE transactions on biomedical engineering, pp 304–308

  • Kai L, Karsten S, Jon Shah N, Lutz J (2000) Tapping movements according to regular and irregular visual timing signals investigated with fMRI. Neuro Rep 11:1301–1306

    Google Scholar 

  • Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65:203–210

    Article  CAS  PubMed  Google Scholar 

  • Kamiński M, Ding M, Truccolo WA, Bressler SL (2001) Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85:145–157. doi:10.1007/s004220000235

    Article  PubMed  Google Scholar 

  • Kikuchi T, Miller JM, Schneck N, Oquendo MA, Mann JJ, Parsey RV, Keilp JG (2012) Neural responses to incongruency in a blocked-trial Stroop fMRI task in major depressive disorder. J Affect Disord 143:241–247. doi:10.1016/j.jad.2012.05.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita M et al (2010) How does voluntary movement stop resting tremor? Clin Neurophysiol 121:983–985

    Article  PubMed  Google Scholar 

  • Korzeniewska A, Manczak M, Kaminski M, Blinowska KJ, Kasicki S (2003) Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. J Neurosci Methods 125:195–207

    Article  PubMed  Google Scholar 

  • Leff DR, Orihuela-Espina F, Elwell CE, Athanasiou T, Delpy DT, Darzi AW, Yang GZ (2011) Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage 54:2922–2936

    Article  PubMed  Google Scholar 

  • Leuchter AF, Newton TF, Cook IA, Walter DO, Rosenberg-Thompson S, Lachenbruch PA (1992) Changes in brain functional connectivity in Alzheimer-type and multi-infarct dementia. Brain 115(Pt 5):1543–1561

    Article  PubMed  Google Scholar 

  • Matsumoto R, Nair DR, LaPresto E, Bingaman W, Shibasaki H, Luders HO (2007) Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain 130:181–197. doi:10.1093/brain/awl257

    Article  PubMed  Google Scholar 

  • Michels L et al (2013) Developmental changes of functional and directed resting-state connectivities associated with neuronal oscillations in EEG. NeuroImage 81:231–242. doi:10.1016/j.neuroimage.2013.04.030

    Article  PubMed  Google Scholar 

  • Muthalib M et al (2013) Multimodal integration of fNIRS, fMRI and EEG neuroimaging. Clin Neurophysiol 124:2060–2062. doi:10.1016/j.clinph.2013.03.018

    Article  PubMed  Google Scholar 

  • Muthuraman M, Heute U, Arning K, Anwar AR, Elble R, Deuschl G, Raethjen J (2012) Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference? NeuroImage 60:1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Nedelko V et al (2010) Age-independent activation in areas of the mirror neuron system during action observation and action imagery. A fMRI study. Restor Neurol Neurosci 28:737–747

    PubMed  Google Scholar 

  • Niedermeyer E, da Silva FHL (2005) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, Philadelphia

  • Nieto-Castañón A, Fedorenko E (2012) Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses. NeuroImage 63:1646–1669. doi:10.1016/j.neuroimage.2012.06.065

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikouline VV, Linkenkaer-Hansen K, Huttunen J, Ilmoniemi RJ (2001) Interhemispheric phase synchrony and amplitude correlation of spontaneous beta oscillations in human subjects: a magnetoencephalographic study. NeuroReport 12:2487–2491

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Oostenveld R, Fries P, Maris E, Schoffelen J-M (2010) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. doi:10.1155/2011/156869

  • Pollok B, Gross J, Dirks M, Timmermann L, Schnitzler A (2004) The cerebral oscillatory network of voluntary tremor. J Physiol 554:871–878

    Article  CAS  PubMed  Google Scholar 

  • Pollok B, Gross J, Schnitzler A (2006) How the brain controls repetitive finger movements. J Physiol-Paris 99:8–13. doi:10.1016/j.jphysparis.2005.06.002

    Article  PubMed  Google Scholar 

  • Rehme AK, Eickhoff SB, Grefkes C (2013) State-dependent differences between functional and effective connectivity of the human cortical motor system. Neuroimage 67:237–246. doi:10.1016/j.neuroimage.2012.11.027

    Article  PubMed  Google Scholar 

  • Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM (1989) The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53:1–31

    Article  CAS  PubMed  Google Scholar 

  • Schelter B et al (2006) Testing for directed influences among neural signals using partial directed coherence. J Neurosci Methods 152:210–219. doi:10.1016/j.jneumeth.2005.09.001

    Article  PubMed  Google Scholar 

  • Schelter B, Timmer J, Eichler M (2009) Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J Neurosci Methods 179:121–130. doi:10.1016/j.jneumeth.2009.01.006

    Article  PubMed  Google Scholar 

  • Schlogl A, Supp G (2006) Analyzing event-related EEG data with multivariate autoregressive parameters. Prog Brain Res 159:135–147. doi:10.1016/s0079-6123(06)59009-0

    Article  PubMed  Google Scholar 

  • Schnitzler A, Gross J (2005) Functional connectivity analysis in magnetoencephalography. Int Rev Neurobiol 68:173–195. doi:10.1016/s0074-7742(05)68007-5

    Article  PubMed  Google Scholar 

  • Sekihara K, Scholz B (1996) Generalized Wiener estimation of three-dimensional current distribution from biomagnetic measurements. IEEE Trans Biomed Eng 43:281–291

    Article  CAS  PubMed  Google Scholar 

  • Seth AK (2010) A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods 186:262–273. doi:10.1016/j.jneumeth.2009.11.020

    Article  PubMed  Google Scholar 

  • Seth AK, Chorley P, Barnett LC (2013) Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling. NeuroImage 65:540–555. doi:10.1016/j.neuroimage.2012.09.049

    Article  PubMed  Google Scholar 

  • Seth AK, Barrett AB, Barnett L (2015) Granger causality analysis in neuroscience and neuroimaging. J Neurosci 35:3293–3297. doi:10.1523/jneurosci.4399-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibasaki H (2008) Human brain mapping: hemodynamic response and electrophysiology. Clin Neurophysiol 119:731–743

    Article  PubMed  Google Scholar 

  • Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012) Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral cortex (New York, NY) 22:158–165. doi:10.1093/cercor/bhr099

    CAS  Google Scholar 

  • Sohn WS, Yoo K, Lee YB, Seo SW, Na DL, Jeong Y (2015) Influence of ROI selection on resting state functional connectivity: an individualized approach for resting state fMRI analysis. Front Neurosci 9:280. doi:10.3389/fnins.2015.00280

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephan KE, Friston KJ (2010) Analyzing effective connectivity with functional magnetic resonance imaging. Wiley Interdiscip Rev 1:446–459. doi:10.1002/wcs.58

    Article  Google Scholar 

  • van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786. doi:10.1523/jneurosci.3539-11.2011

    Article  PubMed  Google Scholar 

  • Van Veen BD, Van Drongelen W, Yuchtman M, Suzuki A (2002) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880

    Article  Google Scholar 

  • Wang J et al (2009) Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30:1511–1523. doi:10.1002/hbm.20623

    Article  PubMed  Google Scholar 

  • Wen X, Yao L, Liu Y, Ding M (2012) Causal interactions in attention networks predict behavioral performance. J Neurosci 32:1284–1292. doi:10.1523/JNEUROSCI.2817-11.2012

    Article  CAS  PubMed  Google Scholar 

  • Wen X, Rangarajan G, Ding M (2013) Is Granger causality a viable technique for analyzing fMRI data? PloS One 8:e67428. doi:10.1371/journal.pone.0067428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witt ST, Laird AR, Meyerand ME (2008) Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage 42:343–356

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu T, Hallett M (2005) The influence of normal human ageing on automatic movements. J Physiol 562:605–615. doi:10.1113/jphysiol.2004.076042

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Parsons LM, Gao JH, Fox PT (1999) Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp 8:151–156

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z (2013) Combining independent component analysis and Granger causality to investigate brain network dynamics with fNIRS measurements. Biomed Opt Express 4:2629–2643. doi:10.1364/boe.4.002629

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhong G, Wu Y, Vangel M, Jiang B, Kong J (2010) Using granger-geweke causality model to evaluate the effective connecitivty of primary motor cortex, supplementary motor area and cerebellum. J Biomed Sci Eng 3:848–860

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Council (SFB 855, projects D2 and D3). Dr. Muthalib is supported by a Labex NUMEV Fellowship (Digital and Hardware Solutions, Environmental and Organic Life Modeling, ANR-10-LABX-20). The funding does not have any involvement in the study design, in the collection, analysis and interpretation of data, in the writing of the manuscript, and in the decision to submit the article for publication. We would also like to thank Marco Dat for assisting with the experimental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthuraman Muthuraman.

Ethics declarations

Conflict of Interest

None of the authors have potential conflicts of interest to be disclosed.

Additional information

A. R. Anwar and M. Muthalib have contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10548_2016_507_MOESM1_ESM.tif

Supplementary Fig. 1. The preprocessing and conditional granger causality (GC) analysis steps for the fNIRS (red), MRI (blue) and EEG (green) modalities are represented as a flow chart. The GC and the surrogate analysis that are common for all the three modalities are represented in black. Supplementary material 1 (TIFF 2700 kb)

10548_2016_507_MOESM2_ESM.tif

Supplementary Fig. 2. The mean group block averaged time course of activation measured by (row 1) fMRI (BOLD), (row 2) fNIRS (O2Hb and HHb), (row 3) EEG-scalp and (row 4) EEG-source from the contralateral sensorimotor cortex (SMC-Blue lines), premotor cortex (PMC-red dashed line) and dorsolateral prefrontal cortex (DLPFC-green dotted line) ROIs during the finger tapping (FT), simple finger sequence (SFS), and complex finger sequence (CFS) tasks of the right hand. The task period starts at 0 s and ends at 30 s. The horizontal black dashed line indicates the significance level in the EEG dynamical coherence plots for the EEG-scalp (row 3) and EEG-source (row 4). Supplementary material 2 (TIFF 3922 kb)

10548_2016_507_MOESM3_ESM.tif

Supplementary Fig. 3. A) The mean group time varying directed Granger causality (GC) analysis for the EEG modality during the finger tapping (FT-column 1), simple finger sequence (SFS-column 2) and complex finger sequence (CFS-column 3) tasks of the right hand. Row 1 and Row 3 shows the mean GC values of all forward connections for the EEG-scalp and EEG-source, respectively (PMC → SMC, DLPFC → SMC and DLPFC → SMC). Row 2 and Row 4 shows the mean GC values for the backward connections for the EEG-scalp and EEG-source, respectively (SMC → PMC, SMC → DLPFC and PMC → DLPFC). Supplementary material 3 (TIFF 75 kb)

10548_2016_507_MOESM4_ESM.tif

Supplementary Fig. 3 B). The mean group time varying directed Granger causality (GC) analysis for the fNIRS modality during the finger tapping (FT-column 1), simple finger sequence (SFS-column 2) and complex finger sequence (CFS-column 3) tasks. Row 1 and Row 3 shows the mean GC values of all forward connections for the fNIRS-O2Hb and fNIRS-HHb, respectively (PMC → SMC, DLPFC → SMC and DLPFC → SMC). Row 2 and Row 4 shows the mean GC values of all backward connections for the fNIRS-O2Hb and fNIRS-HHb, respectively (SMC → PMC, SMC → DLPFC and PMC → DLPFC).. Supplementary material 4 (TIFF 72 kb)

10548_2016_507_MOESM5_ESM.tif

Supplementary Fig. 4. The parcellation of the three ROI’s namely SMC (blue), PMC (red) and DLPFC (green) are shown on the interpolated AAL atlas. The connectivity results for the three tasks are shown on the right side separately for each task.. Supplementary material 5 (TIFF 1147 kb)

10548_2016_507_MOESM6_ESM.tif

Supplementary Fig. 5. The results of the band limited analyses at (2-5 Hz) for the three tasks separately A) Finger tapping; B) Simple Finger sequence; C) Complex finger sequence; and their corresponding connectivity results are shown. Supplementary material 6 (TIFF 2700 kb)

Supplementary material 7 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, A.R., Muthalib, M., Perrey, S. et al. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study. Brain Topogr 29, 645–660 (2016). https://doi.org/10.1007/s10548-016-0507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-016-0507-1

Keywords

Navigation