Skip to main content

Advertisement

Log in

Right Cortical and Axonal Structures Eliciting Ocular Deviation During Electrical Stimulation Mapping in Awake Patients

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

To investigate the neural network underpinning eye movements, a cortical and subcortical intraoperative mapping using direct electrical stimulation (DES) was achieved in six awake patients during surgery for a right frontal low-grade glioma. We assessed the relationship between the occurrence of ocular deviation during both cortical and axonal DES and the anatomic location for each response. The corresponding stimulation sites were reported on a standard brain template for visual analysis and between-subjects comparisons. Our results showed that DES of the cortical frontal eye field (FEF) elicited horizontal (anterior FEF) or upward (posterior FEF) eye movements in 3 patients, supporting the fact that FEF comprises several distinct functional subregions. In addition, subcortical stimulation of the white matter tracts underneath the FEF evoked conjugate contraversive ocular deviation in 3 other patients. Interestingly, this region seems to be a crossroad between the fronto-striatal tract, the frontal aslant tract, the inferior fronto-occipital fascicle and the superior longitudinal fascicle. No deficits in eye movements were observed following surgery. To our knowledge, this is the first study reporting ocular deviation during axonal electrostimulation mapping of the white matter fibers in awake patients. Therefore, our original data issued from DES give new insights into the cortical and subcortical structures involved in the control of eye movements and their strong relationships with other functional pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blanke O, Seeck M (2003) Direction of saccadic and smooth eye movements induced by electrical stimulation of the human frontal eye field: effect of orbital position. Exp Brain Res 150:174–183

    PubMed  Google Scholar 

  • Blanke O, Spinelli L, Thut G, Michel CM, Perrig S, Landis T, Seeck M (2000) Location of the human frontal eye field as defined by electrical cortical stimulation: anatomical, functional and electrophysiological characteristics. NeuroReport 11:1907–1913

    Article  CAS  PubMed  Google Scholar 

  • Brett M, Leff AP, Rorden C, Ashburner J (2001) Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14:486–500

    Article  CAS  PubMed  Google Scholar 

  • Charras P, Herbet G, Deverdun J, de Champfleur NM, Duffau H, Bartolomeo P, Bonnetblanc F (2015) Functional reorganization of the attentional networks in low-grade glioma patients: a longitudinal study. Cortex 63:27–41

    Article  PubMed  Google Scholar 

  • Crapse TB, Sommer MA (2009) Frontal eye field neurons with spatial representations predicted by their subcortical input. J Neurosci 29:5308–5318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Benedictis A, Sarubbo S, Duffau H (2012) Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation. J Neurosurg 117:1053–1069

    Article  PubMed  Google Scholar 

  • de Weijer AD, Mandl RC, Sommer IE, Vink M, Kahn RS, Neggers SF (2010) Human fronto-tectal and fronto-striatal-tectal pathways activate differently during anti-saccades. Front Hum Neurosci 4:41

    PubMed  PubMed Central  Google Scholar 

  • Ding L, Gold JI (2012) Separate, causal roles of the caudate in saccadic choice and execution in a perceptual decision task. Neuron 75:865–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffau H (2005) Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 4:476–486

    Article  PubMed  Google Scholar 

  • Duffau H (2009) Surgery of low-grade gliomas: towards a “functional neurooncology”. Curr Opin Oncol 21:543–549

    Article  PubMed  Google Scholar 

  • Duffau H (2012) The challenge to remove diffuse low-grade gliomas while preserving brain functions. Acta Neurochir (Wien) 154:569–574

    Article  Google Scholar 

  • Duffau H (2014) The huge plastic potential of adult brain and the role of connectomics: new insights provided by serial mappings in glioma surgery. Cortex 258:325–337

    Article  Google Scholar 

  • Duffau H (2015) Stimulation mapping of white matter tracts to study brain functional connectivity. Nat Rev Neurol 11:255–265

    Article  PubMed  Google Scholar 

  • Duffau H, Gatignol P, Mandonnet E, Capelle L, Taillandier L (2008) Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg 109:461–471

    Article  PubMed  Google Scholar 

  • Esterman M, Liu G, Okabe H, Reagan A, Thai M, DeGutis J (2015) Frontal eye field involvement in sustaining visual attention: evidence from transcranial magnetic stimulation. Neuroimage 111:542–548

    Article  PubMed  Google Scholar 

  • Ferrier D (1875) Experiments on the brains of monkeys. Proc R Soc Lond 23:409–430

    Article  Google Scholar 

  • Förster O (1936) Motorische Felder und Bahnen. In: Bumke O, Förster O (eds) Handbuch der Neurologie. Springer, Berlin Heidelberg New York, pp 46–141

    Google Scholar 

  • Godoy J, Lueders H, Dinner DS, Morris HH, Wyllie E (1990) Versive eye movements elicited by electrical cortical stimulation of the human brain. Neurology 40:296–299

    Article  CAS  PubMed  Google Scholar 

  • Herbet G, Lafargue G, Moritz-Gasser S, Bonnetblanc F, Duffau H (2015) Interfering with the neural activity of mirror-related frontal areas impairs mentalistic inferences. Brain Struct Funct 220:2159–2169

    Article  PubMed  Google Scholar 

  • Howard D, Patterson KE (1992) The pyramids and palm trees test. Thames Valley Test Co. Thames Valley Test Company, Bury St Edmunds

    Google Scholar 

  • Kaiboriboon K, Lüders HO, Miller JP, Leigh RJ (2012) Upward gaze and head deviation with frontal eye field stimulation. Epileptic Disord 14:64–68

    PubMed  Google Scholar 

  • Kinoshita M, de Champfleur NM, Deverdun J, Moritz-Gasser S, Herbet G, Duffau H (2014) Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct 220:3399–3412

    Article  PubMed  Google Scholar 

  • Leigh RJ, Foley JM, Remler BF, Civil RH (1987) Oculogyric crisis: a syndrome of thought disorder and ocular deviation. Ann Neurol 22:13–17

    Article  CAS  PubMed  Google Scholar 

  • Lobel E, Kahane P, Leonards U, Grosbras M, Lehericy S, Le Bihan D, Berthoz A (2001) Localization of human frontal eye fields: anatomical and functional findings of functional magnetic resonance imaging and intracerebral electrical stimulation. J Neurosurg 95:804–815

    Article  CAS  PubMed  Google Scholar 

  • Lynch JC, Tian JR (2006) Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res 151:461–501

    Article  CAS  PubMed  Google Scholar 

  • McDowell JE, Dyckman KA, Austin BP, Clementz BA (2008) Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn 68:255–270

    Article  PubMed  PubMed Central  Google Scholar 

  • McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763

    Article  CAS  PubMed  Google Scholar 

  • Milea D, Lobel E, Lehéricy S, Duffau H, Rivaud-Péchoux S, Berthoz A, Pierrot-Deseilligny C (2002) Intraoperative frontal eye field stimulation elicits ocular deviation and saccade suppression. NeuroReport 13:1359–1364

    Article  PubMed  Google Scholar 

  • Milea D, Lehéricy S, Rivaud-Péchoux S, Duffau H, Lobel E, Capelle L, Marsault C, Berthoz A, Pierrot-Deseilligny C (2003) Antisaccade deficit after anterior cingulate cortex resection. NeuroReport 14:283–287

    Article  CAS  PubMed  Google Scholar 

  • Moritz-Gasser S, Herbet G, Duffau H (2013) Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study. Neuropsychologia 51:1814–1822

    Article  PubMed  Google Scholar 

  • Neggers SF, Zandbelt BB, Schall MS, Schall JD (2015) Comparative diffusion tractography of corticostriatal motor pathways reveals differences between humans and macaques. J Neurophysiol 113:2164–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  • Petit L, Haxby JV (1999) Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 82:463–471

    CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Rivaud S, Gaymard B, Müri R, Vermersch AI (1995) Cortical control of saccades. Ann Neurol 37:557–567

    Article  CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Ploner CJ, Muri RM, Gaymard B, Rivaud-Pechoux S (2002) Effects of cortical lesions on saccadic: eye movements in humans. Ann N Y Acad Sci 956:216–229

    Article  PubMed  Google Scholar 

  • Premereur E, Vanduffel W, Roelfsema PR, Janssen P (2012) Frontal eye field microstimulation induces task-dependent gamma oscillations in the lateral intraparietal area. J Neurophysiol 108:1392–1402

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen T, Penfield W (1948) Movement of the head and eyes from stimulation of human frontal cortex. Res Publ Assoc Res Nerv Mental Dis 23:346–361

    Google Scholar 

  • Rech F, Herbet G, Moritz-Gasser S, Duffau H (2014) Disruption of bimanual movement by unilateral subcortical stimulation. Hum Brain Mapp 35:3439–3445

    Article  PubMed  Google Scholar 

  • Rech F, Herbet G, Moritz-Gasser S, Duffau H (2015) Somatotopic organization of the white matter tracts underpinning motor control in humans: an electrical stimulation study. Brain Struct Funct Oct 12. [Epub ahead of print]

  • Sarubbo S, De Benedictis A, Maldonado IL, Basso G, Duffau H (2013) Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct 218:21–37

    Article  PubMed  Google Scholar 

  • Schucht P, Moritz-Gasser S, Herbet G, Raabe A, Duffau H (2012) Subcortical electrostimulation to identify network subserving motor control. Hum Brain Mapp 34:3023–3030

    Article  PubMed  Google Scholar 

  • Tehovnik EJ, Slocum WM (2000) Effects of training on saccadic eye movements elicited electrically from the frontal cortex of monkeys. Brain Res 877:101–106

    Article  CAS  PubMed  Google Scholar 

  • Thiebaut de Schotten M, Urbanski M, Duffau H, Volle E, Levy R, Dubois B, Bartolomeo P (2005) Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 309:2226–2228

    Article  CAS  PubMed  Google Scholar 

  • Thompson KG, Biscoe KL, Sato TR (2005) Neuronal basis of covert spatial attention in the frontal eye field. J Neurosci 25:9479–9487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurtell MJ, Mohamed A, Lüders HO, Leigh RJ (2009) Evidence for three-dimensional cortical control of gaze from epileptic patients. J Neurol Neurosurg Psychiatry 80:683–685

    Article  CAS  PubMed  Google Scholar 

  • van Geemen K, Herbet G, Moritz-Gasser S, Duffau H (2014) Limited plastic potential of the left ventral premotor cortex in speech articulation: evidence From intraoperative awake mapping in glioma patients. Hum Brain Mapp 35:1587–1596

    Article  PubMed  Google Scholar 

  • Vernet M, Quentin R, Chanes L, Mitsumasu A, Valero-Cabré A (2014) Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front Integr Neurosci 8:66

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Duffau.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montemurro, N., Herbet, G. & Duffau, H. Right Cortical and Axonal Structures Eliciting Ocular Deviation During Electrical Stimulation Mapping in Awake Patients. Brain Topogr 29, 561–571 (2016). https://doi.org/10.1007/s10548-016-0490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-016-0490-6

Keywords

Navigation