Skip to main content
Log in

Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The integration of vision and somatosensation is required to allow for accurate motor behavior. While both sensory systems contribute to an understanding of the state of the body through continuous updating and estimation, how the brain processes unreliable sensory information remains to be fully understood in the context of complex action. Using functional brain imaging, we sought to understand the role of the cerebellum in weighting visual and somatosensory feedback by selectively reducing the reliability of each sense individually during a tool use task. We broadly hypothesized upregulated activation of the sensorimotor and cerebellar areas during movement with reduced visual reliability, and upregulated activation of occipital brain areas during movement with reduced somatosensory reliability. As specifically compared to reduced somatosensory reliability, we expected greater activations of ipsilateral sensorimotor cerebellum for intact visual and somatosensory reliability. Further, we expected that ipsilateral posterior cognitive cerebellum would be affected with reduced visual reliability. We observed that reduced visual reliability results in a trend towards the relative consolidation of sensorimotor activation and an expansion of cerebellar activation. In contrast, reduced somatosensory reliability was characterized by the absence of cerebellar activations and a trend towards the increase of right frontal, left parietofrontal activation, and temporo-occipital areas. Our findings highlight the role of the cerebellum for specific aspects of skillful motor performance. This has relevance to understanding basic aspects of brain functions underlying sensorimotor integration, and provides a greater understanding of cerebellar function in tool use motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4:324–330

    Article  PubMed  CAS  Google Scholar 

  • Andersson JLR, Jenkinson M, Smith SM (2007a) Non-linear optimisation. FMRIB technical report TR07JA1

  • Andersson JLR, Jenkinson M, Smith SM (2007b) Non-linear registration, aka Spatial normalisation. FMRIB technical report TR07JA2

  • Bagesteiro LB, Sarlegna FR, Sainburg RL (2006) Differential influence of vision and proprioception on control of movement distance. Exp Brain Res 171:358–370

    Article  PubMed  Google Scholar 

  • Balsters JH, Whelan CD, Robertson IH, Ramnani N (2013) Cerebellum and cognition: evidence for the encoding of higher order rules. Cereb Cortex 23:1433–1443

    Article  PubMed  Google Scholar 

  • Baron GC, Irving GA (2002) Effects of tourniquet ischemia on current perception thresholds in healthy volunteers. Pain Pract 2:129–133

    Article  PubMed  Google Scholar 

  • Baumann O, Mattingley JB (2010) Scaling of neural responses to visual and auditory motion in the human cerebellum. J Neurosci 30:4489–4495

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp MS, Yasar NE, Kishan N, Ro T (2007) Human MST but not MT responds to tactile stimulation. J Neurosci 27:8261–8267

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp MS, Laconte S, Yasar N (2009) Distributed representation of single touches in somatosensory and visual cortex. Hum Brain Mapp 30:3163–3171

    Article  PubMed  Google Scholar 

  • Beckmann CF, Jenkinson M, Smith SM (2003) General multilevel linear modeling for group analysis in FMRI. Neuroimage 20:1052–1063

    Article  PubMed  Google Scholar 

  • Beneish RG, Polomeno RC, Flanders ME, Koenekoop RK (2009) Optimal compliance for amblyopia therapy: occlusion with a translucent tape on the lens. Can J Ophthalmol 44:523–528

    Article  PubMed  Google Scholar 

  • Bernard JA, Seidler RD (2013) Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. Cerebellum 12:721–737

    Article  PubMed  Google Scholar 

  • Bernier PM, Chua R, Bard C, Franks IM (2006) Updating of an internal model without proprioception: a deafferentation study. Neuroreport 17:1421–1425

    Article  PubMed  Google Scholar 

  • Bhanpuri NH, Okamura AM, Bastian AJ (2012) Active force perception depends on cerebellar function. J Neurophysiol 107:1612–1620

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhanpuri NH, Okamura AM, Bastian AJ (2013) Predictive modeling by the cerebellum improves proprioception. J Neurosci 33:14301–14306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11:3276–3286

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman A, Rosen B, van Westen D, Larsson EM, Lundborg G (2004) Acute improvement of contralateral hand function after deafferentation. Neuroreport 15:1861–1865

    Article  PubMed  Google Scholar 

  • Bjorkman A, Rosen B, Lundborg G (2005) Enhanced function in nerve-injured hands after contralateral deafferentation. Neuroreport 16:517–519

    Article  PubMed  Google Scholar 

  • Blakemore SJ, Wolpert D, Frith C (2000) Why can’t you tickle yourself? Neuroreport 11:R11–R16

    Article  PubMed  CAS  Google Scholar 

  • Blakemore SJ, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 12:1879–1884

    Article  PubMed  CAS  Google Scholar 

  • Bohlhalter S, Hattori N, Wheaton L, Fridman E, Shamim EA, Garraux G, Hallett M (2009) Gesture subtype-dependent left lateralization of praxis planning: an event-related fMRI study. Cereb Cortex 19:1256–1262

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bushara KO, Wheat JM, Khan A, Mock BJ, Turski PA, Sorenson J, Brooks BR (2001) Multiple tactile maps in the human cerebellum. Neuroreport 12:2483–2486

    Article  PubMed  CAS  Google Scholar 

  • Chiou-Tan FY, Robinson LR, Castro J, Tran T, Moss F (2002) Tourniquet obliteration of exercise-induced sensory nerve conduction augmentation. Am J Phys Med Rehabil 81:2–7

    Article  PubMed  Google Scholar 

  • Christensen MS, Lundbye-Jensen J, Geertsen SS, Petersen TH, Paulson OB, Nielsen JB (2007) Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback. Nat Neurosci 10:417–419

    PubMed  CAS  Google Scholar 

  • Christensen MS, Lundbye-Jensen J, Grey MJ, Vejlby AD, Belhage B, Nielsen JB (2010) Illusory sensation of movement induced by repetitive transcranial magnetic stimulation. PLoS One 5:e13301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R (2010) Size of error affects cerebellar contributions to motor learning. J Neurophysiol 103:2275–2284

    Article  PubMed  PubMed Central  Google Scholar 

  • Dannenberg S, Gieselmann MA, Kruse W, Hoffmann KP (2009) Influence of visually guided tracking arm movements on single cell activity in area MT. Exp Brain Res 199:355–368

    Article  PubMed  Google Scholar 

  • Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25:9919–9931

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dohle C, Kleiser R, Seitz RJ, Freund HJ (2004) Body scheme gates visual processing. J Neurophysiol 91:2376–2379

    Article  PubMed  Google Scholar 

  • Donchin O, Rabe K, Diedrichsen J, Lally N, Schoch B, Gizewski ER, Timmann D (2012) Cerebellar regions involved in adaptation to force field and visuomotor perturbation. J Neurophysiol 107:134–147

    Article  PubMed  Google Scholar 

  • Doya K (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw 12:961–974

    Article  PubMed  Google Scholar 

  • Ebner TJ, Pasalar S (2008) Cerebellum predicts the future motor state. Cerebellum 7:583–588

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision-versus power-grip tasks: an fMRI study. J Neurophysiol 83:528–536

    PubMed  CAS  Google Scholar 

  • Ehrsson HH, Fagergren E, Forssberg H (2001) Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J Neurophysiol 85:2613–2623

    PubMed  CAS  Google Scholar 

  • Evans A, Collins D, Mills S, Brown E, Kelly R, Peters T (1993) 3D statistical neuroanatomical models from 305 MRI volumes. In IEEE-nuclear science symposium and medical imaging Conference, Piscataway, NJ, pp. 1813–1817

  • Fridman EA et al (2006) The role of the dorsal stream for gesture production. Neuroimage 29:417–428

    Article  PubMed  Google Scholar 

  • Ghez C, Gordon J, Ghilardi MF (1995) Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy JNeurophysiol 73:361–372

    CAS  Google Scholar 

  • Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 13:55–73

    Article  PubMed  CAS  Google Scholar 

  • Hamzei F, Dettmers C, Rijntjes M, Glauche V, Kiebel S, Weber B, Weiller C (2002) Visuomotor control within a distributed parieto-frontal network. Exp Brain Res 146:273–281

    Article  PubMed  Google Scholar 

  • Hansson S (1999) The association between nerve conduction velocity and the compound action potential amplitude during ischemic blocking. Electromyogr Clin Neurophysiol 39:113–122

    PubMed  CAS  Google Scholar 

  • Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67:283–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang MX, Harrington DL, Paulson KM, Weisend MP, Lee RR (2004) Temporal dynamics of ipsilateral and contralateral motor activity during voluntary finger movement. Hum Brain Mapp 23:26–39

    Article  PubMed  Google Scholar 

  • Imai S, Hase K, Imanaka K, Suzuki E, Tanaka N, Liu M (2005) Motor strategies responsible for maintaining standing posture after deafferentation of the unilateral leg. Arch Phys Med Rehabil 86:2027–2033

    Article  PubMed  Google Scholar 

  • Imamizu H, Kawato M (2012) Cerebellar internal models: implications for the dexterous use of tools. Cerebellum 11:325–335

    Article  PubMed  CAS  Google Scholar 

  • Imamizu H et al (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195

    Article  PubMed  CAS  Google Scholar 

  • Izawa J, Shadmehr R (2011) Learning from sensory and reward prediction errors during motor adaptation. PLoS Comput Biol 7:e1002012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2012) Cerebellar contributions to reach adaptation and learning sensory consequences of action. J Neurosci 32:4230–4239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jenkinson M (2003) Fast, automated, N-dimensional phase-unwrapping algorithm. Magn Reson Med 49:193–197

    Article  PubMed  Google Scholar 

  • Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841

    Article  PubMed  Google Scholar 

  • Kellermann T, Regenbogen C, De Vos M, Mossnang C, Finkelmeyer A, Habel U (2012) Effective connectivity of the human cerebellum during visual attention. J Neurosci 32:11453–11460

    Article  PubMed  CAS  Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444

    PubMed  CAS  Google Scholar 

  • Kluzik J, Diedrichsen J, Shadmehr R, Bastian AJ (2008) Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm? J Neurophysiol 100:1455–1464

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruse W, Dannenberg S, Kleiser R, Hoffmann KP (2002) Temporal relation of population activity in visual areas MT/MST and in primary motor cortex during visually guided tracking movements. Cereb Cortex 12:466–476

    Article  PubMed  Google Scholar 

  • Kuper M et al (2013) Activation of the cerebellar cortex and the dentate nucleus in a prism adaptation fMRI study. Hum Brain Mapp 35:1574–1586

    Article  PubMed  Google Scholar 

  • Luaute J, Schwartz S, Rossetti Y, Spiridon M, Rode G, Boisson D, Vuilleumier P (2009) Dynamic changes in brain activity during prism adaptation. J Neurosci 29:169–178

    Article  PubMed  CAS  Google Scholar 

  • McNulty PA, Macefield VG, Taylor JL, Hallett M (2002) Cortically evoked neural volleys to the human hand are increased during ischaemic block of the forearm. J Physiol 538:279–288

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a smith predictor? J Mot Behav 25:203–216

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Christensen LO, Cain O, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5:e316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milner TE, Franklin DW, Imamizu H, Kawato M (2007) Central control of grasp: manipulation of objects with complex and simple dynamics. Neuroimage 36:388–395

    Article  PubMed  Google Scholar 

  • Mizelle JC, Forrester L, Hallett M, Wheaton LA (2010a) Electroencephalographic reactivity to unimodal and bimodal visual and proprioceptive demands in sensorimotor integration. Exp Brain Res 203:659–670

    Article  PubMed  CAS  Google Scholar 

  • Mizelle JC, Forrester L, Hallett M, Wheaton LA (2010b) Theta frequency band activity and attentional mechanisms in visual and proprioceptive demand. Exp Brain Res 204:189–197

    Article  PubMed  CAS  Google Scholar 

  • Nitschke MF, Kleinschmidt A, Wessel K, Frahm J (1996) Somatotopic motor representation in the human anterior cerebellum. A high-resolution functional MRI study. Brain 119(Pt 3):1023–1029

    Article  PubMed  Google Scholar 

  • O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965

    Article  PubMed  PubMed Central  Google Scholar 

  • Oreja-Guevara C, Kleiser R, Paulus W, Kruse W, Seitz RJ, Hoffmann KP (2004) The role of V5 (hMT+) in visually guided hand movements: an fMRI study. Eur J Neurosci 19:3113–3120

    Article  PubMed  CAS  Google Scholar 

  • Paulin MG (2005) Evolution of the cerebellum as a neuronal machine for Bayesian state estimation. J Neural Eng 2:S219–S234

    Article  PubMed  CAS  Google Scholar 

  • Popa D, Spolidoro M, Proville RD, Guyon N, Belliveau L, Lena C (2013) Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci 33:6552–6556

    Article  PubMed  CAS  Google Scholar 

  • Proctor A (2009) Traumatic Brain Injury and Binasal Occlusion. Optom Vis Dev 40:45–50

    Google Scholar 

  • Rijntjes M, Buechel C, Kiebel S, Weiller C (1999) Multiple somatotopic representations in the human cerebellum. Neuroreport 10:3653–3658

    Article  PubMed  CAS  Google Scholar 

  • Rorden C, Karnath HO, Bonilha L (2007) Improving lesion-symptom mapping. J Cogn Neurosci 19:1081–1088

    Article  PubMed  Google Scholar 

  • Rost K, Nowak DA, Timmann D, Hermsdorfer J (2005) Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol 116:1405–1414

    Article  PubMed  Google Scholar 

  • Salmelin R, Forss N, Knuutila J, Hari R (1995) Bilateral activation of the human somatomotor cortex by distal hand movements. Electroencephalogr Clin Neurophysiol 95:444–452

    Article  PubMed  CAS  Google Scholar 

  • Sarlegna FR, Przybyla A, Sainburg RL (2009) The influence of target sensory modality on motor planning may reflect errors in sensori-motor transformations. Neuroscience 164:597–610

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sarlegna FR, Malfait N, Bringoux L, Bourdin C, Vercher JL (2010) Force-field adaptation without proprioception: can vision be used to model limb dynamics? Neuropsychologia 48:60–67

    Article  PubMed  Google Scholar 

  • Savaki HE, Dalezios Y (1999) 14C-deoxyglucose mapping of the monkey brain during reaching to visual targets. Prog Neurobiol 58:473–540

    Article  PubMed  CAS  Google Scholar 

  • Scheidt RA, Zimbelman JL, Salowitz NM, Suminski AJ, Mosier KM, Houk J, Simo L (2012) Remembering forward: neural correlates of memory and prediction in human motor adaptation. Neuroimage 59:582–600

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlee G, Milani TL, Sterzing T, Oriwol D (2009) Short-time lower leg ischemia reduces plantar foot sensitivity. Neurosci Lett 462:286–288

    Article  PubMed  CAS  Google Scholar 

  • Schlerf JE, Verstynen TD, Ivry RB, Spencer RM (2010) Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol 103:3330–3336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schlerf J, Ivry RB, Diedrichsen J (2012) Encoding of sensory prediction errors in the human cerebellum. J Neurosci 32:4913–4922

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Serwe S, Drewing K, Trommershauser J (2009) Combination of noisy directional visual and proprioceptive information. J Vis 9:28 21–14

    Article  Google Scholar 

  • Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185:359–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  • Shaikh AG et al (2011) Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol 105:3034–3041

    Article  PubMed  Google Scholar 

  • Singh LN et al (1998) Functional MR imaging of cortical activation of the cerebral hemispheres during motor tasks. Am J Neuroradiol 19:275–280

    PubMed  CAS  Google Scholar 

  • Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  PubMed  Google Scholar 

  • Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821

    Article  PubMed  Google Scholar 

  • Smith SM et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  • Sober SJ, Sabes PN (2003) Multisensory integration during motor planning. J Neurosci 23:6982–6992

    PubMed  CAS  Google Scholar 

  • Sober SJ, Sabes PN (2005) Flexible strategies for sensory integration during motor planning. Nat Neurosci 8:490–497

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501

    Article  PubMed  Google Scholar 

  • Taig E, Kuper M, Theysohn N, Timmann D, Donchin O (2012) Deficient use of visual information in estimating hand position in cerebellar patients. J Neurosci 32:16274–16284

    Article  PubMed  CAS  Google Scholar 

  • Thickbroom GW, Byrnes ML, Mastaglia FL (2003) Dual representation of the hand in the cerebellum: activation with voluntary and passive finger movement. Neuroimage 18:670–674

    Article  PubMed  Google Scholar 

  • Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62

    Article  PubMed  Google Scholar 

  • Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH (2001) An integrated software suite for surface-based analyses of cerebral cortex. J Am Med Inform Assoc 8:443–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Voller B, Floel A, Werhahn KJ, Ravindran S, Wu CW, Cohen LG (2006) Contralateral hand anesthesia transiently improves poststroke sensory deficits. Ann Neurol 59:385–388

    Article  PubMed  Google Scholar 

  • Werhahn KJ, Mortensen J, Van Boven RW, Zeuner KE, Cohen LG (2002) Enhanced tactile spatial acuity and cortical processing during acute hand deafferentation. Nat Neurosci 5:936–938

    Article  PubMed  CAS  Google Scholar 

  • Wheaton LA, Mizelle JC, Forrester LW, Bai O, Shibasaki H, Macko RF (2007) How does the brain respond to unimodal and bimodal sensory demand in movement of the lower extremity? Exp Brain Res 180:345–354

    Article  PubMed  Google Scholar 

  • Whitney D, Ellison A, Rice NJ, Arnold D, Goodale M, Walsh V, Milner D (2007) Visually guided reaching depends on motion area MT+. Cereb Cortex 17:2644–2649

    Article  PubMed  Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11:R729–R732

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  PubMed  CAS  Google Scholar 

  • Woolrich MW, Ripley BD, Brady M, Smith SM (2001) Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14:1370–1386

    Article  PubMed  CAS  Google Scholar 

  • Woolrich MW, Behrens TE, Beckmann CF, Jenkinson M, Smith SM (2004) Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 21:1732–1747

    Article  PubMed  Google Scholar 

  • Worsley KJ, Evans AC, Marrett S, Neelin P (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12:900–918

    Article  PubMed  CAS  Google Scholar 

  • Yadav V, Sainburg RL (2011) Motor lateralization is characterized by a serial hybrid control scheme. Neuroscience 196:153–167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis A. Wheaton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizelle, J.C., Oparah, A. & Wheaton, L.A. Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum. Brain Topogr 29, 27–41 (2016). https://doi.org/10.1007/s10548-015-0446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-015-0446-2

Keywords

Navigation