Skip to main content
Log in

Assessing the Spatial Precision of SE and GE-BOLD Contrast at 7 Tesla

  • Brief Communication
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Spin echo (SE) EPI offers an alternative to standard gradient echo (GE) EPI for functional MRI. SE-EPI offers improved spatial specificity, since signal changes originate from the microvasculature, but its lower functional sensitivity has limited the usage of this sequence in fMRI experiments. Differential fMRI paradigms, in which two closely matched stimulus conditions are used, can suppress the contribution from veins, thus also offering improved spatial specificity compared to conventional block or event-related designs with long “rest” periods. In this study, we employed a differential fMRI paradigm to stimulate bands of primary visual cortex with pre-defined widths by using visual stimuli comprised of complementary rings of contrast-reversing checkerboard patterns (8 Hz). This paradigm was used to investigate the spatial specificity of GE and SE-BOLD contrast at 7T. Results show that the contrast-to-noise ratio (CNR) is larger for GE-EPI data than for the SE-EPI data for band widths in the range 1.7–6.6 mm, however as the width of the band decreases the CNR for GE and SE sequences converges. These results suggest that when using a differential mapping paradigm, GE-BOLD contrast is better for studying functional features that are larger than ~1.5 mm in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Sanchez Panchuelo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchuelo, R.M.S., Schluppeck, D., Harmer, J. et al. Assessing the Spatial Precision of SE and GE-BOLD Contrast at 7 Tesla. Brain Topogr 28, 62–65 (2015). https://doi.org/10.1007/s10548-014-0420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-014-0420-4

Keywords

Navigation