Skip to main content
Log in

Frontal Midline Theta Reflects Individual Task Performance in a Working Memory Task

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Frontal midline (fm-)theta activity has been related to working memory (WM) processes, as it typically increases with WM load. The robustness of this effect, however, varies across studies and subjects, putting limits to its interpretation. We hypothesized that variation in the fm-theta effect may reflect individual differences in task difficulty with increasing WM load as indicated by behavioural responses. We further tested whether effects in the alpha range are robust markers of WM load. We recorded 64-channel EEG from 24 healthy adults while they memorized either 2 or 4 unfamiliar symbols (low vs. high WM load) in a modified Sternberg task. The last 2 s of the retention phase were analyzed for WM load-related changes in the theta (5–7 Hz) and alpha range (lower: 8–10 Hz, upper: 10.5–12.5 Hz). Higher WM load led to less accurate and slower responses. The increase of fm-theta with WM load was most pronounced at fm electrodes, localized to anterior cingulate regions, and correlated with the participants’ decrease in accuracy due to higher WM load. Alpha peak frequency increased in the high compared to the low WM load condition, corresponding to a decrease in lower alpha range across all channels. The results demonstrate that previously reported variation in fm-theta workload effects can partly be explained by variation in task difficulty indexed by individual task accuracy. Moreover, the results also demonstrate that alpha WM load effects are prominent when separating upper and lower alpha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4(10):829–839

    Article  CAS  PubMed  Google Scholar 

  • Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener SI (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron 66(6):921–936

    Article  CAS  PubMed  Google Scholar 

  • Benchenane K, Tiesinga PH, Battaglia FP (2011) Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr Opin Neurobiol 21(3):475–485

    Article  CAS  PubMed  Google Scholar 

  • Best JR, Miller PH (2010) A developmental perspective on executive function. Child Dev 81(6):1641–1660

    Article  PubMed Central  PubMed  Google Scholar 

  • Boonstra TW, Powell TY, Mehrkanoon S, Breakspear M (2013) Effects of mnemonic load on cortical activity during visual working memory: linking ongoing brain activity with evoked responses. Int J Psychophysiol 89(3):409–418

    Article  PubMed  Google Scholar 

  • Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC (1997) A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5(1):49–62

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh JF, Eisenberg I, Guitart-Masip M, Huys Q, Frank MJ (2013) Frontal theta overrides pavlovian learning biases. J Neurosci 33(19):8541–8548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386(6625):604–608

    Article  CAS  PubMed  Google Scholar 

  • Doppelmayr M, Klimesch W, Sauseng P, Hodlmoser K, Stadler W, Hanslmayr S (2005) Intelligence related differences in EEG-bandpower. Neurosci Lett 381(3):309–313

    Article  CAS  PubMed  Google Scholar 

  • Doppelmayr M, Finkenzeller T, Sauseng P (2008) Frontal midline theta in the pre-shot phase of rifle shooting: differences between experts and novices. Neuropsychologia 46(5):1463–1467

    Article  CAS  PubMed  Google Scholar 

  • Dumontheil I, Roggeman C, Ziermans T, Peyrard-Janvid M, Matsson H, Kere J, Klingberg T (2011) Influence of the COMT genotype on working memory and brain activity changes during development. Biol Psychiatry 70(3):222–229

    Article  CAS  PubMed  Google Scholar 

  • Gasser T, Bacher P, Mocks J (1982) Transformations towards the normal distribution of broad band spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol 53(1):119–124

    Article  CAS  PubMed  Google Scholar 

  • Gevins A, Smith ME (2000) Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb Cortex 10(9):829–839

    Article  CAS  PubMed  Google Scholar 

  • Gevins A, Smith ME, McEvoy L, Yu D (1997) High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7(4):374–385

    Article  CAS  PubMed  Google Scholar 

  • Ishihara T, Yoshi N (1972) Multivariate analytic study of EEG and mental activity in juvenile delinquents. Electroencephalogr Clin Neurophysiol 33(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Ishii R, Shinosaki K, Ukai S, Inouye T, Ishihara T, Yoshimine T, Hirabuki N, Asada H, Kihara T, Robinson SE, Takeda M (1999) Medial prefrontal cortex generates frontal midline theta rhythm. Neuroreport 10(4):675–679

    Article  CAS  PubMed  Google Scholar 

  • Itthipuripat S, Wessel JR, Aron AR (2013) Frontal theta is a signature of successful working memory manipulation. Exp Brain Res 224(2):255–262

    Article  PubMed Central  PubMed  Google Scholar 

  • Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15(8):1395–1399

    Article  PubMed  Google Scholar 

  • Jensen O, Gelfand J, Kounios J, Lisman JE (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12(8):877–882

    Article  PubMed  Google Scholar 

  • Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2000) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111(10):1745–1758

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29(2–3):169–195

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53(1):63–88

    Article  PubMed  Google Scholar 

  • Klingberg T (2010) Training and plasticity of working memory. Trends Cogn Sci 14(7):317–324

    Article  PubMed  Google Scholar 

  • Langer N, von Bastian CC, Wirz H, Oberauer K, Jancke L (2013) The effects of working memory training on functional brain network efficiency. Cortex 49(9):2424–2438

    Article  PubMed  Google Scholar 

  • Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48(6):609–621

    Article  CAS  PubMed  Google Scholar 

  • Lett TA, Voineskos AN, Kennedy JL, Levine B, Daskalakis ZJ (2013) Treating working memory deficits in schizophrenia: a review of the neurobiology. Biol Psychiatry 75(5):361–370

    Article  PubMed  Google Scholar 

  • Luu P, Tucker DM, Makeig S (2004) Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clin Neurophysiol 115(8):1821–1835

    Article  PubMed  Google Scholar 

  • Maurer U, Brem S, Bucher K, Kranz F, Benz R, Steinhausen H-C, Brandeis D (2007) Impaired tuning of a fast occipito-temporal response for print in dyslexic children learning to read. Brain 130:3200–3210

    Article  PubMed  Google Scholar 

  • Meltzer JA, Negishi M, Mayes LC, Constable RT (2007) Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clin Neurophysiol 118(11):2419–2436

    Article  PubMed Central  PubMed  Google Scholar 

  • Meltzer JA, Zaveri HP, Goncharova II, Distasio MM, Papademetris X, Spencer SS, Spencer DD, Constable RT (2008) Effects of working memory load on oscillatory power in human intracranial EEG. Cereb Cortex 18(8):1843–1855

    Article  PubMed Central  PubMed  Google Scholar 

  • Michel CM, König T, Brandeis D, Gianotti LRR, Wackermann J (2009) Electrical neuroimaging. Cambridge University Press, New York

    Book  Google Scholar 

  • Michels L, Moazami-Goudarzi M, Jeanmonod D, Sarnthein J (2008) EEG alpha distinguishes between cuneal and precuneal activation in working memory. Neuroimage 40(3):1296–1310

    Article  PubMed  Google Scholar 

  • Michels L, Bucher K, Luchinger R, Klaver P, Martin E, Jeanmonod D, Brandeis D (2010) Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PLoS One 5(4):e10298

    Article  PubMed Central  PubMed  Google Scholar 

  • Onton J, Delorme A, Makeig S (2005) Frontal midline EEG dynamics during working memory. Neuroimage 27(2):341–356

    Article  PubMed  Google Scholar 

  • Park JY, Min BK, Jung YC, Pak H, Jeong YH, Kim E (2013) Illumination influences working memory: an EEG study. Neuroscience 247:386–394

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MC, Hell D, Koukkou M (1999) Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 90(3):169–179

    Article  CAS  PubMed  Google Scholar 

  • Payne L, Kounios J (2009) Coherent oscillatory networks supporting short-term memory retention. Brain Res 1247:126–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfurtscheller G, Stancak A Jr, Neuper C (1996) Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24(1–2):39–46

    Article  CAS  PubMed  Google Scholar 

  • Raghavachari S, Kahana MJ, Rizzuto DS, Caplan JB, Kirschen MP, Bourgeois B, Madsen JR, Lisman JE (2001) Gating of human theta oscillations by a working memory task. J Neurosci 21(9):3175–3183

    CAS  PubMed  Google Scholar 

  • Raghavachari S, Lisman JE, Tully M, Madsen JR, Bromfield EB, Kahana MJ (2006) Theta oscillations in human cortex during a working-memory task: evidence for local generators. J Neurophysiol 95(3):1630–1638

    Article  CAS  PubMed  Google Scholar 

  • Rhodes SM, Park J, Seth S, Coghill DR (2012) A comprehensive investigation of memory impairment in attention deficit hyperactivity disorder and oppositional defiant disorder. J Child Psychol Psychiatry 53(2):128–137

    Article  PubMed  Google Scholar 

  • Sander MC, Lindenberger U, Werkle-Bergner M (2012) Lifespan age differences in working memory: a two-component framework. Neurosci Biobehav Rev 36(9):2007–2033

    Article  PubMed  Google Scholar 

  • Sauseng P, Griesmayr B, Freunberger R, Klimesch W (2010) Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34(7):1015–1022

    Article  PubMed  Google Scholar 

  • Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen MC (2009) Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage 44(3):1224–1238

    Article  PubMed  Google Scholar 

  • Schulz E, Maurer U, van der Mark S, Bucher K, Brem S, Martin E, Brandeis D (2008) Impaired semantic processing during sentence reading in children with dyslexia: combined fMRI and ERP evidence. Neuroimage 41(1):153–168

    Article  PubMed  Google Scholar 

  • Sonuga-Barke EJ, Brandeis D, Cortese S, Daley D, Ferrin M, Holtmann M, Stevenson J, Danckaerts M, van der Oord S, Dopfner M, Dittmann RW, Simonoff E, Zuddas A, Banaschewski T, Buitelaar J, Coghill D, Hollis C, Konofal E, Lecendreux M, Wong IC, Sergeant J (2013) Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. Am J Psychiatry 170(3):275–289

    Article  PubMed  Google Scholar 

  • Sternberg S (1966) High-speed scanning in human memory. Science 153(736):652–654

    Article  CAS  PubMed  Google Scholar 

  • Surwillo W (1961) Frequency of the alpha rhythm, reaction time and age. Nature 191:823–824

    Article  Google Scholar 

  • van Ewijk H, Heslenfeld DJ, Luman M, Rommelse NN, Hartman CA, Hoekstra P, Franke B, Buitelaar JK, Oosterlaan J (2013) Visuospatial working memory in ADHD patients, unaffected siblings, and healthy controls. J Atten Disord [Epub ahead of printing]

  • Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF (2005) Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry 57(11):1336–1346

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the University Research Priority Program on Integrative Human Physiology and the SNSF grant 32003B_125407.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Maurer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 594 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer, U., Brem, S., Liechti, M. et al. Frontal Midline Theta Reflects Individual Task Performance in a Working Memory Task. Brain Topogr 28, 127–134 (2015). https://doi.org/10.1007/s10548-014-0361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-014-0361-y

Keywords

Navigation