Skip to main content
Log in

An Overview of Stimulus-Specific Adaptation in the Auditory Thalamus

  • Review
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

In the auditory brain, some populations of neurons exhibit stimulus-specific adaptation (SSA), whereby they adapt to frequently occurring stimuli but retain sensitivity to stimuli that are rare. SA has been observed in auditory structures from the midbrain to the primary auditory cortex (A1) and has been proposed to be a precursor to the generation of deviance detection. SSA is strongly expressed in non-lemniscal regions of the medial geniculate body (MGB), the principal nucleus of the auditory thalamus. In this account we review the state of the art of SSA research in the MGB, highlighting the importance of this auditory centre in detecting sounds that may be relevant for survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275(5297):220–224

    CAS  PubMed  Google Scholar 

  • Abolafia JM, Vergara R, Arnold MM, Reig R, Sanchez-Vives MV (2011) Cortical auditory adaptation in the awake rat and the role of potassium currents. Cereb Cortex 21(5):977–990. doi:10.1093/cercor/bhq163

    PubMed  Google Scholar 

  • Aguillon BN, Nieto J, Escera C, Malmierca MS (2013) Response to complex patterns of regularity in the inferior colliculus of the anesthetized rat. In: ARO 36th annual midwinter meeting, Baltimore, MA, USA, 16–20 Feb 2013, p 321

  • Ahmed M, Mallo T, Leppanen PH, Hamalainen J, Ayravainen L, Ruusuvirta T, Astikainen P (2011) Mismatch brain response to speech sound changes in rats. Front Psychol 2:283. doi:10.3389/fpsyg.2011.00283

    PubMed Central  PubMed  Google Scholar 

  • Alitto HJ, Usrey WM (2003) Corticothalamic feedback and sensory processing. Curr Opin Neurobiol 13(4):440–445

    CAS  PubMed  Google Scholar 

  • Althen H, Grimm S, Escera C (2011) Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials. PLoS One 6(12):e28522. doi:10.1371/journal.pone.0028522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson LA, Malmierca MS (2013) The effect of auditory cortex deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37(1):52–62. doi:10.1111/ejn.12018

    CAS  PubMed  Google Scholar 

  • Anderson LA, Christianson GB, Linden JF (2009) Stimulus-specific adaptation occurs in the auditory thalamus. J Neurosci 29(22):7359–7363. doi:10.1523/JNEUROSCI.0793-09.2009

    CAS  PubMed  Google Scholar 

  • Antunes FM, Malmierca MS (2011) Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 31(47):17306–17316. doi:10.1523/JNEUROSCI.1915-11.2011

    CAS  PubMed  Google Scholar 

  • Antunes FM, Covey E, Malmierca MS (2010a) Is there stimulus-specific adaptation in the medial geniculate body of the rat? In: Lopez-Poveda EA, Palmer AR, Meddis R (eds) The neurophysiological bases of auditory perception. Springer, New York, pp 535–544. doi:10.1007/978-1-4419-5686-6_49

    Google Scholar 

  • Antunes FM, Nelken I, Covey E, Malmierca MS (2010b) Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS One 5(11):e14071. doi:10.1371/journal.pone.0014071

    PubMed Central  PubMed  Google Scholar 

  • Antunes R, Moita MA (2010) Discriminative auditory fear learning requires both tuned and nontuned auditory pathways to the amygdala. J Neurosci 30(29):9782–9787. doi:10.1523/JNEUROSCI.1037-10.2010

    CAS  PubMed  Google Scholar 

  • Astikainen P, Ruusuvirta T, Wikgren J, Penttonen M (2006) Memory-based detection of rare sound feature combinations in anesthetized rats. NeuroReport 17(14):1561–1564. doi:10.1097/01.wnr.0000233097.13032.7d

    PubMed  Google Scholar 

  • Astikainen P, Stefanics G, Nokia M, Lipponen A, Cong F, Penttonen M, Ruusuvirta T (2011) Memory-based mismatch response to frequency changes in rats. PLoS One 6(9):e24208. doi:10.1371/journal.pone.0024208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avissar M, Furman AC, Saunders JC, Parsons TD (2007) Adaptation reduces spike-count reliability, but not spike-timing precision, of auditory nerve responses. J Neurosci 27(24):6461–6472. doi:10.1523/JNEUROSCI.5239-06.2007

    CAS  PubMed  Google Scholar 

  • Ayala YA, Malmierca MS (2013) Stimulus-specific adaptation and deviance detection in the inferior colliculus. Front Neural Circuits 6:89. doi:10.3389/fncir.2012.00089

    PubMed Central  PubMed  Google Scholar 

  • Ayala YA, Perez-Gonzalez D, Duque D, Nelken I, Malmierca MS (2013) Frequency discrimination and stimulus deviance in the inferior colliculus and cochlear nucleus. Front Neural Circuits 6:119. doi:10.3389/fncir.2012.00119

    PubMed Central  PubMed  Google Scholar 

  • Bajo VM, King AJ (2012) Cortical modulation of auditory processing in the midbrain. Front Neural Circuits 6:114. doi:10.3389/fncir.2012.00114

    PubMed Central  PubMed  Google Scholar 

  • Bajo VM, Merchan MA, Lopez DE, Rouiller EM (1993) Neuronal morphology and efferent projections of the dorsal nucleus of the lateral lemniscus in the rat. J Comp Neurol 334(2):241–262. doi:10.1002/cne.903340207

    CAS  PubMed  Google Scholar 

  • Bajo VM, Nodal FR, Moore DR, King AJ (2010) The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nat Neurosci 13(2):253–260. doi:10.1038/nn.2466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bajo VM, Rouiller EM, Welker E, Clarke S, Villa AE, de Ribaupierre Y, de Ribaupierre F (1995) Morphology and spatial distribution of corticothalamic terminals originating from the cat auditory cortex. Hearing Res 83(1–2):161–174

    Google Scholar 

  • Bartlett EL, Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81(5):1999–2016

    CAS  PubMed  Google Scholar 

  • Bartlett EL, Smith PH (2002) Effects of paired-pulse and repetitive stimulation on neurons in the rat medial geniculate body. Neuroscience 113(4):957–974

    CAS  PubMed  Google Scholar 

  • Bartlett EL, Wang X (2007) Neural representations of temporally modulated signals in the auditory thalamus of awake primates. J Neurophysiol 97(2):1005–1017. doi:10.1152/jn.00593.2006

    PubMed  Google Scholar 

  • Bartlett EL, Stark JM, Guillery RW, Smith PH (2000) Comparison of the fine structure of cortical and collicular terminals in the rat medial geniculate body. Neuroscience 100(4):811–828

    CAS  PubMed  Google Scholar 

  • Bäuerle P, von der Behrens W, Kossl M, Gaese BH (2011) Stimulus-specific adaptation in the gerbil primary auditory thalamus is the result of a fast frequency-specific habituation and is regulated by the corticofugal system. J Neurosci 31(26):9708–9722. doi:10.1523/JNEUROSCI.5814-10.2011

    PubMed  Google Scholar 

  • Beckers GJ, Gahr M (2012) Large-scale synchronized activity during vocal deviance detection in the zebra finch auditory forebrain. J Neurosci 32(31):10594–10608. doi:10.1523/JNEUROSCI.6045-11.2012

    CAS  PubMed  Google Scholar 

  • Bordi F, LeDoux JE (1994a) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Exp Brain Res 98(2):261–274

    CAS  PubMed  Google Scholar 

  • Bordi F, LeDoux JE (1994b) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp Brain Res 98(2):275–286

    CAS  PubMed  Google Scholar 

  • Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling maximizes information transmission. Neuron 26(3):695–702

    CAS  PubMed  Google Scholar 

  • Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3(11):2365–2380

    CAS  PubMed  Google Scholar 

  • Campi KL, Bales KL, Grunewald R, Krubitzer L (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20(1):89–108. doi:10.1093/cercor/bhp082

    PubMed Central  PubMed  Google Scholar 

  • Cant NB, Benson CG (2006) Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J Comp Neurol 495(5):511–528. doi:10.1002/cne.20888

    PubMed Central  PubMed  Google Scholar 

  • Cappe C, Morel A, Barone P, Rouiller EM (2009a) The thalamocortical projection systems in primate: an anatomical support for multisensory and sensorimotor interplay. Cereb Cortex 19(9):2025–2037. doi:10.1093/cercor/bhn228

    PubMed Central  PubMed  Google Scholar 

  • Cappe C, Rouiller EM, Barone P (2009b) Multisensory anatomical pathways. Hear Res 258(1–2):28–36. doi:10.1016/j.heares.2009.04.017

    CAS  PubMed  Google Scholar 

  • Carandini M (2000) Visual cortex: fatigue and adaptation. Curr Biol 10(16):R605–R607

    CAS  PubMed  Google Scholar 

  • Carral V, Corral MJ, Escera C (2005a) Auditory event-related potentials as a function of abstract change magnitude. NeuroReport 16(3):301–305

    PubMed  Google Scholar 

  • Carral V, Huotilainen M, Ruusuvirta T, Fellman V, Näätänen R, Escera C (2005b) A kind of auditory ‘primitive intelligence’ already present at birth. Eur J Neurosci 21(11):3201–3204. doi:10.1111/j.1460-9568.2005.04144.x

    PubMed  Google Scholar 

  • Carrasco A, Lomber SG (2009) Differential modulatory influences between primary auditory cortex and the anterior auditory field. J Neurosci 29(26):8350–8362. doi:10.1523/JNEUROSCI.6001-08.2009

    CAS  PubMed  Google Scholar 

  • Cetas JS, Price RO, Crowe J, Velenovsky DS, McMullen NT (2003) Dendritic orientation and laminar architecture in the rabbit auditory thalamus. J Comp Neurol 458(3):307–317. doi:10.1002/cne.10595

    PubMed  Google Scholar 

  • Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34(3):437–446

    CAS  PubMed  Google Scholar 

  • Clerici WJ, Coleman JR (1990) Anatomy of the rat medial geniculate body: I. Cytoarchitecture, myeloarchitecture, and neocortical connectivity. J Comp Neurol 297(1):14–31. doi:10.1002/cne.902970103

    CAS  PubMed  Google Scholar 

  • Clerici WJ, McDonald AJ, Thompson R, Coleman JR (1990) Anatomy of the rat medial geniculate body: II. Dendritic morphology. J Comp Neurol 297(1):32–54. doi:10.1002/cne.902970104

    CAS  PubMed  Google Scholar 

  • Condon CD, Weinberger NM (1991) Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behav Neurosci 105(3):416–430

    CAS  PubMed  Google Scholar 

  • Coomber B, Edwards D, Jones SJ, Shackleton TM, Goldschmidt J, Wallace MN, Palmer AR (2011) Cortical inactivation by cooling in small animals. Front Syst Neurosci 5:53. doi:10.3389/fnsys.2011.00053

    PubMed Central  PubMed  Google Scholar 

  • Costa-Faidella J, Grimm S, Slabu L, Diaz-Santaella F, Escera C (2011) Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials. Psychophysiology 48(6):774–783. doi:10.1111/j.1469-8986.2010.01144.x

    PubMed  Google Scholar 

  • Csepe V, Karmos G, Molnar M (1987a) Effects of signal probability on sensory evoked potentials in cats. Int J Neurosci 33(1–2):61–71

    CAS  PubMed  Google Scholar 

  • Csepe V, Karmos G, Molnar M (1987b) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat–animal model of mismatch negativity. Electroencephalogr Clin Neurophysiol 66(6):571–578

    CAS  PubMed  Google Scholar 

  • de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006) Thalamic connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat Rec (Hoboken) 295(5):822–836. doi:10.1002/ar.22454

    Google Scholar 

  • De Ribaupierre F (1997) Acoustical information processing in the auditory thalamus and cerebral cortex. In: Romand GEaR (ed) The central auditory system. Oxford University Press, Oxford, p 317–397

  • Dean I, Robinson BL, Harper NS, McAlpine D (2008) Rapid neural adaptation to sound level statistics. J Neurosci 28(25):6430–6438. doi:10.1523/JNEUROSCI.0470-08.2008

    CAS  PubMed  Google Scholar 

  • deCharms RC, Merzenich MM (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381(6583):610–613. doi:10.1038/381610a0

    CAS  PubMed  Google Scholar 

  • Donishi T, Kimura A, Okamoto K, Tamai Y (2006) “Ventral” area in the rat auditory cortex: a major auditory field connected with the dorsal division of the medial geniculate body. Neuroscience 141(3):1553–1567. doi:10.1016/j.neuroscience.2006.04.037

    CAS  PubMed  Google Scholar 

  • Doron NN, Ledoux JE, Semple MN (2002) Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. J Comp Neurol 453(4):345–360. doi:10.1002/cne.10412

    PubMed  Google Scholar 

  • Duque D, Perez-Gonzalez D, Ayala YA, Palmer AR, Malmierca MS (2012) Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. J Neurosci 32(49):17762–17774. doi:10.1523/JNEUROSCI.3190-12.2012

    CAS  PubMed  Google Scholar 

  • Duque D, Malmierca MS, Caspary DM (2013) Modulation of stimulus-specific adaptation by GABAA receptor activation or blockade in the medial geniculate body of the anesthetized rat. J Physiol. doi: 10.1113/jphysiol.2013.261941

  • Edeline JM, Weinberger NM (1991) Subcortical adaptive filtering in the auditory system: associative receptive field plasticity in the dorsal medial geniculate body. Behav Neurosci 105(1):154–175

    CAS  PubMed  Google Scholar 

  • Edeline JM, Weinberger NM (1992) Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behav Neurosci 106(1):81–105

    CAS  PubMed  Google Scholar 

  • Escera C, Alho K, Winkler I, Näätänen R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cognitive Neurosci 10(5):590–604

    CAS  Google Scholar 

  • Eytan D, Brenner N, Marom S (2003) Selective adaptation in networks of cortical neurons. J Neurosci 23(28):9349–9356

    CAS  PubMed  Google Scholar 

  • Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412(6849):787–792. doi:10.1038/3509050035090500

    CAS  PubMed  Google Scholar 

  • Farley BJ, Quirk MC, Doherty JJ, Christian EP (2010) Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. J Neurosci 30(49):16475–16484. doi:10.1523/JNEUROSCI.2793-10.2010

    CAS  PubMed  Google Scholar 

  • Feliciano M, Potashner SJ (1995) Evidence for a glutamatergic pathway from the guinea pig auditory cortex to the inferior colliculus. J Neurochem 65(3):1348–1357

    CAS  PubMed  Google Scholar 

  • Fischer C, Morlet D, Giard M (2000) Mismatch negativity and N100 in comatose patients. Audiol Neurootol 5(3–4):192–197

    CAS  PubMed  Google Scholar 

  • Fishman YI, Steinschneider M (2012) Searching for the mismatch negativity in primary auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation? J Neurosci 32(45):15747–15758. doi:10.1523/JNEUROSCI.2835-12.2012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Games KD, Winer JA (1988) Layer V in rat auditory cortex: projections to the inferior colliculus and contralateral cortex. Hear Res 34(1):1–25

    CAS  PubMed  Google Scholar 

  • Gerren RA, Weinberger NM (1983) Long term potentiation in the magnocellular medial geniculate nucleus of the anesthetized cat. Brain Res 265(1):138–142

    CAS  PubMed  Google Scholar 

  • Ghosh S, Murray GM, Turman AB, Rowe MJ (1994) Corticothalamic influences on transmission of tactile information in the ventroposterolateral thalamus of the cat: effect of reversible inactivation of somatosensory cortical areas I and II. Exp Brain Res 100(2):276–286

    CAS  PubMed  Google Scholar 

  • Grimm S, Escera C (2012) Auditory deviance detection revisited: evidence for a hierarchical novelty system. Int J Psychophysiol 85(1):88–92. doi:10.1016/j.ijpsycho.2011.05.012

    PubMed  Google Scholar 

  • Grimm S, Escera C, Slabu L, Costa-Faidella J (2011) Electrophysiological evidence for the hierarchical organization of auditory change detection in the human brain. Psychophysiology 48(3):377–384. doi:10.1111/j.1469-8986.2010.01073.x

    PubMed  Google Scholar 

  • Grimm S, Recasens M, Althen H, Escera C (2012) Ultrafast tracking of sound location changes as revealed by human auditory evoked potentials. Biol Psychol 89(1):232–239. doi:10.1016/j.biopsycho.2011.10.014

    PubMed  Google Scholar 

  • Han L, Zhang Y, Lou Y, Xiong Y (2012) Thalamic activation modulates the responses of neurons in rat primary auditory cortex: an in vivo intracellular recording study. PLoS One 7(4):e34837. doi:10.1371/journal.pone.0034837

    CAS  PubMed Central  PubMed  Google Scholar 

  • He J (1997) Modulatory effects of regional cortical activation on the onset responses of the cat medial geniculate neurons. J Neurophysiol 77(2):896–908

    CAS  PubMed  Google Scholar 

  • He J (2003a) Corticofugal modulation of the auditory thalamus. Exp Brain Res 153(4):579–590. doi:10.1007/s00221-003-1680-5

    PubMed  Google Scholar 

  • He J (2003b) Corticofugal modulation on both ON and OFF responses in the nonlemniscal auditory thalamus of the guinea pig. J Neurophysiol 89(1):367–381. doi:10.1152/jn.00593.2002

    PubMed  Google Scholar 

  • He J, Yu YQ, Xiong Y, Hashikawa T, Chan YS (2002) Modulatory effect of cortical activation on the lemniscal auditory thalamus of the Guinea pig. J Neurophysiol 88(2):1040–1050

    PubMed  Google Scholar 

  • Hefti BJ, Smith PH (2000) Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A) blockade. J Neurophysiol 83(5):2626–2638

    CAS  PubMed  Google Scholar 

  • Hu B, Senatorov V, Mooney D (1994) Lemniscal and non-lemniscal synaptic transmission in rat auditory thalamus. J Physiol 479(Pt 2):217–231

    PubMed Central  PubMed  Google Scholar 

  • Huang CL, Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. J Comp Neurol 427(2):302–331. doi:10.1002/1096-9861(20001113)427:2<302:AID-CNE10>3.0.CO;2-J

    CAS  PubMed  Google Scholar 

  • Huotilainen M, Kujala A, Hotakainen M, Parkkonen L, Taulu S, Simola J, Nenonen J, Karjalainen M, Näätänen R (2005) Short-term memory functions of the human fetus recorded with magnetoencephalography. NeuroReport 16(1):81–84

    PubMed  Google Scholar 

  • Irvine DR, Huebner H (1979) Acoustic response characteristics of neurons in nonspecific areas of cat cerebral cortex. J Neurophysiol 42(1 Pt 1):107–122

    CAS  PubMed  Google Scholar 

  • Isaacson JS, Scanziani M (2011) How inhibition shapes cortical activity. Neuron 72(2):231–243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito T, Oliver DL (2012) The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus. Front Neural Circuits 6:48. doi:10.3389/fncir.2012.00048

    PubMed Central  PubMed  Google Scholar 

  • Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114(6):1133–1143

    PubMed  Google Scholar 

  • Jacobsen T, Schröger E, Sussman E (2004) Pre-attentive categorization of vowel formant structure in complex tones. Brain Res Cogn Brain Res 20(3):473–479. doi:10.1016/j.cogbrainres.2004.03.021

    PubMed  Google Scholar 

  • Jahnsen H, Llinas R (1984) Voltage-dependent burst-to-tonic switching of thalamic cell activity: an in vitro study. Arch Ital Biol 122(1):73–82

    CAS  PubMed  Google Scholar 

  • Javitt DC, Schroeder CE, Steinschneider M, Arezzo JC, Vaughan HG Jr (1992) Demonstration of mismatch negativity in the monkey. Electroencephalogr Clin Neurophysiol 83(1):87–90

    CAS  PubMed  Google Scholar 

  • Javitt DC, Steinschneider M, Schroeder CE, Vaughan HG Jr, Arezzo JC (1994) Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation. Brain Res 667(2):192–200

    CAS  PubMed  Google Scholar 

  • Kane NM, Curry SH, Rowlands CA, Manara AR, Lewis T, Moss T, Cummins BH, Butler SR (1996) Event-related potentials—neurophysiological tools for predicting emergence and early outcome from traumatic coma. Intensive Care Med 22(1):39–46

    CAS  PubMed  Google Scholar 

  • Kimura A, Donishi T, Sakoda T, Hazama M, Tamai Y (2003) Auditory thalamic nuclei projections to the temporal cortex in the rat. Neuroscience 117(4):1003–1016

    CAS  PubMed  Google Scholar 

  • Kimura A, Donishi T, Okamoto K, Imbe H, Tamai Y (2007) Efferent connections of the ventral auditory area in the rat cortex: implications for auditory processing related to emotion. Eur J Neurosci 25(9):2819–2834. doi:10.1111/j.1460-9568.2007.05519.x

    CAS  PubMed  Google Scholar 

  • Kimura A, Yokoi I, Imbe H, Donishi T, Kaneoke Y (2012) Auditory thalamic reticular nucleus of the rat: anatomical nodes for modulation of auditory and cross-modal sensory processing in the loop connectivity between the cortex and thalamus. J Comp Neurol 520(7):1457–1480. doi:10.1002/cne.22805

    PubMed  Google Scholar 

  • Komura Y, Tamura R, Uwano T, Nishijo H, Kaga K, Ono T (2001) Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature 412(6846):546–549. doi:10.1038/3508759535087595

    CAS  PubMed  Google Scholar 

  • Komura Y, Tamura R, Uwano T, Nishijo H, Ono T (2005) Auditory thalamus integrates visual inputs into behavioral gains. Nat Neurosci 8(9):1203–1209. doi:10.1038/nn1528

    CAS  PubMed  Google Scholar 

  • Kraus N, McGee T, Carrell T, King C, Littman T, Nicol T (1994a) Discrimination of speech-like contrasts in the auditory thalamus and cortex. J Acoust Soc Am 96(5 Pt 1):2758–2768

    CAS  PubMed  Google Scholar 

  • Kraus N, McGee T, Littman T, Nicol T, King C (1994b) Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol 72(3):1270–1277

    CAS  PubMed  Google Scholar 

  • LeDoux JE (1995) Emotion: clues from the brain. Annu Rev Psychol 46:209–235. doi:10.1146/annurev.ps.46.020195.001233

    CAS  PubMed  Google Scholar 

  • Ledoux JE, Muller J (1997) Emotional memory and psychopathology. Philos Trans R Soc Lond B 352(1362):1719–1726. doi:10.1098/rstb1997.0154

    CAS  Google Scholar 

  • LeDoux JE, Sakaguchi A, Reis DJ (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4(3):683–698

    CAS  PubMed  Google Scholar 

  • LeDoux JE, Ruggiero DA, Reis DJ (1985a) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J Comp Neurol 242(2):182–213. doi:10.1002/cne.902420204

    CAS  PubMed  Google Scholar 

  • LeDoux JE, Sakaguchi A, Iwata J, Reis DJ (1985b) Auditory emotional memories: establishment by projections from the medial geniculate nucleus to the posterior neostriatum and/or dorsal amygdala. Ann N Y Acad Sci 444:463–464

    CAS  PubMed  Google Scholar 

  • Ledoux JE, Ruggiero DA, Forest R, Stornetta R, Reis DJ (1987) Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J Comp Neurol 264(1):123–146. doi:10.1002/cne.902640110

    CAS  PubMed  Google Scholar 

  • Lee CC, Winer JA (2008) Connections of cat auditory cortex: I. Thalamocortical system. J Comp Neurol 507(6):1879–1900. doi:10.1002/cne.21611

    PubMed Central  PubMed  Google Scholar 

  • Lee CC, Winer JA (2011) Convergence of thalamic and cortical pathways in cat auditory cortex. Hear Res 274(1–2):85–94. doi:10.1016/j.heares.2010.05.008

    PubMed Central  PubMed  Google Scholar 

  • Leon A, Elgueda D, Silva MA, Hamame CM, Delano PH (2012) Auditory cortex basal activity modulates cochlear responses in chinchillas. PLoS One 7(4):e36203. doi:10.1371/journal.pone.0036203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leung S, Recasens M, Grimm S, Escera C (2013) Electrophysiological index of acoustic temporal regularity violation in the middle latency range. Clin Neurophysiol. doi:10.1016/j.clinph.2013.06.001

    PubMed  Google Scholar 

  • Liu X, Yan Y, Wang Y, Yan J (2010) Corticofugal modulation of initial neural processing of sound information from the ipsilateral ear in the mouse. PLoS One 5(11):e14038. doi:10.1371/journal.pone.0014038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llano DA, Sherman SM (2008) Evidence for nonreciprocal organization of the mouse auditory thalamocortical-corticothalamic projection systems. J Comp Neurol 507(2):1209–1227. doi:10.1002/cne.21602

    PubMed  Google Scholar 

  • Lomber SG, Payne BR, Horel JA (1999) The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function. J Neurosci Methods 86(2):179–194

    CAS  PubMed  Google Scholar 

  • Lumani A, Zhang H (2010) Responses of neurons in the rat’s dorsal cortex of the inferior colliculus to monaural tone bursts. Brain Res 1351:115–129. doi:10.1016/j.brainres.2010.06.066

    CAS  PubMed  Google Scholar 

  • Luo F, Wang Q, Kashani A, Yan J (2008) Corticofugal modulation of initial sound processing in the brain. J Neurosci 28(45):11615–11621. doi:10.1523/JNEUROSCI.3972-08.2008

    CAS  PubMed  Google Scholar 

  • Malmierca MS, Hackett TA (2010) Structural organization of the ascending auditory pathway. In: Moore DR (ed) The Oxford handbook of auditory science: the auditory brain. OUP, New York, pp 9–41

    Google Scholar 

  • Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29(17):5483–5493. doi:10.1523/JNEUROSCI.4153-08.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malone BJ, Scott BH, Semple MN (2002) Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of awake macaques. J Neurosci 22(11):4625–4638

    CAS  PubMed  Google Scholar 

  • May P, Tiitinen H (2001) Human cortical processing of auditory events over time. NeuroReport 12(3):573–577

    CAS  PubMed  Google Scholar 

  • May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47(1):66–122. doi:10.1111/j.1469-8986.2009.00856.x

    PubMed  Google Scholar 

  • Moore DR (1993) Plasticity of binaural hearing and some possible mechanisms following late-onset deprivation. J Am Acad Audiol 4(5):277–283 (discussion 283–274)

    CAS  PubMed  Google Scholar 

  • Morest DK (1964) The neuronal architecture of the medial geniculate body of the cat. J Anat 98:611–630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moriizumi T, Hattori T (1991) Pyramidal cells in rat temporoauditory cortex project to both striatum and inferior colliculus. Brain Res Bull 27(1):141–144

    CAS  PubMed  Google Scholar 

  • Muller JR, Metha AB, Krauskopf J, Lennie P (1999) Rapid adaptation in visual cortex to the structure of images. Science 285(5432):1405–1408

    CAS  PubMed  Google Scholar 

  • Näätänen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42(4):313–329

    Google Scholar 

  • Näätänen R, Paavilainen P, Alho K, Reinikainen K, Sams M (1987) The mismatch negativity to intensity changes in an auditory stimulus sequence. Electroencephalogr Clin Neurophysiol Suppl 40:125–131

    PubMed  Google Scholar 

  • Näätänen R, Schröger E, Karakas S, Tervaniemi M, Paavilainen P (1993) Development of a memory trace for a complex sound in the human brain. NeuroReport 4(5):503–506

    PubMed  Google Scholar 

  • Näätänen R, Jacobsen T, Winkler I (2005) Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Psychophysiology 42(1):25–32. doi:10.1111/j.1469-8986.2005.00256.x

    PubMed  Google Scholar 

  • Näätänen R, Astikainen P, Ruusuvirta T, Huotilainen M (2010) Automatic auditory intelligence: an expression of the sensory-cognitive core of cognitive processes. Brain Res Rev 64(1):123–136. doi:10.1016/j.brainresrev.2010.03.001

    PubMed  Google Scholar 

  • Nakamoto KT, Shackleton TM, Palmer AR (2010) Responses in the inferior colliculus of the guinea pig to concurrent harmonic series and the effect of inactivation of descending controls. J Neurophysiol 103(4):2050–2061. doi:10.1152/jn.00451.2009

    PubMed Central  PubMed  Google Scholar 

  • Nakamura T, Michie PT, Fulham WR, Todd J, Budd TW, Schall U, Hunter M, Hodgson DM (2011) Epidural auditory event-related potentials in the rat to frequency and duration deviants: evidence of mismatch negativity? Front Psychol 2:367. doi:10.3389/fpsyg.2011.00367

    PubMed Central  PubMed  Google Scholar 

  • Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21(3–4):214–223

    Google Scholar 

  • Ojima H (1994) Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb Cortex 4(6):646–663

    CAS  PubMed  Google Scholar 

  • Ojima H, Rouiller EM (2011) Auditory cortical projections to the medial geniculate body. In: J.A. Winer CES (ed) The auditory cortex. Springer, New York, p 171–188

  • Orman SS, Humphrey GL (1981) Effects of changes in cortical arousal and of auditory cortex cooling on neuronal activity in the medial geniculate body. Exp Brain Res 42(3–4):475–482

    CAS  PubMed  Google Scholar 

  • Paavilainen P, Jiang D, Lavikainen J, Näätänen R (1993) Stimulus duration and the sensory memory trace: an event-related potential study. Biol Psychol 35(2):139–152

    CAS  PubMed  Google Scholar 

  • Palmer AR, Hall DA, Sumner C, Barrett DJ, Jones S, Nakamoto K, Moore DR (2007) Some investigations into non-passive listening. Hear Res 229(1–2):148–157. doi:10.1016/j.heares.2006.12.007

    CAS  PubMed  Google Scholar 

  • Patel CR, Redhead C, Cervi AL, Zhang H (2012) Neural sensitivity to novel sounds in the rat’s dorsal cortex of the inferior colliculus as revealed by evoked local field potentials. Hear Res 286(1–2):41–54. doi:10.1016/j.heares.2012.02.007

    PubMed  Google Scholar 

  • Perez-Gonzalez D, Malmierca MS (2012) Variability of the time course of stimulus-specific adaptation in the inferior colliculus. Front Neural Circuits 6:107. doi:10.3389/fncir.2012.00107

    PubMed Central  PubMed  Google Scholar 

  • Perez-Gonzalez D, Malmierca MS, Covey E (2005) Novelty detector neurons in the mammalian auditory midbrain. Eur J Neurosci 22(11):2879–2885. doi:10.1111/j.1460-9568.2005.04472.x

    PubMed  Google Scholar 

  • Perez-Gonzalez D, Hernandez O, Covey E, Malmierca MS (2012) GABA(A)-mediated inhibition modulates stimulus-specific adaptation in the inferior colliculus. PLoS One 7(3):e34297. doi:10.1371/journal.pone.0034297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peruzzi D, Bartlett E, Smith PH, Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17(10):3766–3777

    CAS  PubMed  Google Scholar 

  • Pincze Z, Lakatos P, Rajkai C, Ulbert I, Karmos G (2001) Separation of mismatch negativity and the N1 wave in the auditory cortex of the cat: a topographic study. Clin Neurophysiol 112(5):778–784

    CAS  PubMed  Google Scholar 

  • Polley DB, Read HL, Storace DA, Merzenich MM (2007) Multiparametric auditory receptive field organization across five cortical fields in the albino rat. J Neurophysiol 97(5):3621–3638. doi:10.1152/jn.01298.2006

    PubMed  Google Scholar 

  • Ponnath A, Hoke KL, Farris HE (2013) Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation. J Comp Physiol A 199(4):295–313. doi:10.1007/s00359-013-0794-x

    Google Scholar 

  • Recasens M, Grimm S, Capilla A, Nowak R, Escera C (2012) Two sequential processes of change detection in hierarchically ordered areas of the human auditory cortex. Cereb Cortex. doi:10.1093/cercor/bhs295

    PubMed  Google Scholar 

  • Reches A, Gutfreund Y (2008) Stimulus-specific adaptations in the gaze control system of the barn owl. J Neurosci 28(6):1523–1533. doi:10.1523/JNEUROSCI.3785-07.2008

    CAS  PubMed  Google Scholar 

  • Reches A, Netser S, Gutfreund Y (2010) Interactions between stimulus-specific adaptation and visual auditory integration in the forebrain of the barn owl. J Neurosci 30(20):6991–6998. doi:10.1523/JNEUROSCI.5723-09.2010

    CAS  PubMed  Google Scholar 

  • Richardson BD, Hancock KE, Caspary DM (2013) Stimulus-specific adaptation in auditory thalamus of young and aged awake rats. J Neurophysiol. doi:10.1152/jn.00403.2013

    PubMed  Google Scholar 

  • Robinson BL, McAlpine D (2009) Gain control mechanisms in the auditory pathway. Curr Opin Neurobiol 19(4):402–407. doi:10.1016/j.conb.2009.07.006

    CAS  PubMed  Google Scholar 

  • Roger C, Hasbroucq T, Rabat A, Vidal F, Burle B (2009) Neurophysics of temporal discrimination in the rat: a mismatch negativity study. Psychophysiology 46(5):1028–1032. doi:10.1111/j.1469-8986.2009.00840.x

    PubMed  Google Scholar 

  • Rose D, Blakemore C (1974) Effects of bicuculline on functions of inhibition in visual cortex. Nature 249(455):375–377

    CAS  PubMed  Google Scholar 

  • Rothman JS, Cathala L, Steuber V, Silver RA (2009) Synaptic depression enables neuronal gain control. Nature 457(7232):1015–1018. doi:10.1038/nature07604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rouiller EM, Welker E (2000) A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res Bull 53(6):727–741

    CAS  PubMed  Google Scholar 

  • Rushmore RJ, Payne BR, Lomber SG (2005) Functional impact of primary visual cortex deactivation on subcortical target structures in the thalamus and midbrain. J Comp Neurol 488(4):414–426. doi:10.1002/cne.20597

    PubMed  Google Scholar 

  • Ruusuvirta T, Astikainen P, Wikgren J, Nokia M (2010) Hippocampus responds to auditory change in rabbits. Neuroscience 170(1):232–237. doi:10.1016/j.neuroscience.2010.06.062

    CAS  PubMed  Google Scholar 

  • Ruusuvirta T, Lipponen A, Pellinen E, Penttonen M, Astikainen P (2013) Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats. PLoS One 8(1):e54624. doi:10.1371/journal.pone.0054624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryugo DK, Weinberger NM (1976) Corticofugal modulation of the medial geniculate body. Exp Neurol 51(2):377–391

    CAS  PubMed  Google Scholar 

  • Ryugo DK, Weinberger NM (1978) Differential plasticity of morphologically distinct neuron populations in the medical geniculate body of the cat during classical conditioning. Behav Biol 22(3):275–301

    CAS  PubMed  Google Scholar 

  • Saldana E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371(1):15–40. doi:10.1002/(SICI)1096-9861(19960715)371:1<15:AID-CNE2>3.0.CO;2-O10.1002/(SICI)1096-9861(19960715)371:1<15:AID-CNE2>3.0.CO;2-O

    CAS  PubMed  Google Scholar 

  • Sambeth A, Pakarinen S, Ruohio K, Fellman V, van Zuijen TL, Huotilainen M (2009) Change detection in newborns using a multiple deviant paradigm: a study using magnetoencephalography. Clin Neurophysiol 120(3):530–538. doi:10.1016/j.clinph.2008.12.033

    PubMed  Google Scholar 

  • Sams M, Paavilainen P, Alho K, Näätänen R (1985) Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol 62(6):437–448

    CAS  PubMed  Google Scholar 

  • Sanchez-Vives MV, Nowak LG, McCormick DA (2000a) Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J Neurosci 20(11):4286–4299

    CAS  PubMed  Google Scholar 

  • Sanchez-Vives MV, Nowak LG, McCormick DA (2000b) Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci 20(11):4267–4285

    CAS  PubMed  Google Scholar 

  • Schreiner CE, Cynader MS (1984) Basic functional organization of second auditory cortical field (AII) of the cat. J Neurophysiol 51(6):1284–1305

    CAS  PubMed  Google Scholar 

  • Schul J, Mayo AM, Triblehorn JD (2012) Auditory change detection by a single neuron in an insect. J Comp Physiol A 198(9):695–704. doi:10.1007/s00359-012-0740-3

    Google Scholar 

  • Schwartz O, Simoncelli EP (2001) Natural signal statistics and sensory gain control. Nat Neurosci 4(8):819–825. doi:10.1038/90526

    CAS  PubMed  Google Scholar 

  • Sherman SM (2001a) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24(2):122–126

    CAS  PubMed  Google Scholar 

  • Sherman SM (2001b) A wake-up call from the thalamus. Nat Neurosci 4(4):344–346. doi:10.1038/85973

    CAS  PubMed  Google Scholar 

  • Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17(4):417–422. doi:10.1016/j.conb.2007.07.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76(3):1367–1395

    CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B 357(1428):1695–1708. doi:10.1098/rstb2002.1161

    Google Scholar 

  • Sillito AM, Jones HE, Gerstein GL, West DC (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369(6480):479–482. doi:10.1038/369479a0

    CAS  PubMed  Google Scholar 

  • Slabu L, Escera C, Grimm S, Costa-Faidella J (2010) Early change detection in humans as revealed by auditory brainstem and middle-latency evoked potentials. Eur J Neurosci 32(5):859–865. doi:10.1111/j.1460-9568.2010.07324.x

    PubMed  Google Scholar 

  • Slabu L, Grimm S, Escera C (2012) Novelty detection in the human auditory brainstem. J Neurosci 32(4):1447–1452. doi:10.1523/JNEUROSCI.2557-11.2012

    CAS  PubMed  Google Scholar 

  • Smith PH, Bartlett EL, Kowalkowski A (2006) Unique combination of anatomy and physiology in cells of the rat paralaminar thalamic nuclei adjacent to the medial geniculate body. J Comp Neurol 496(3):314–334. doi:10.1002/cne.20913

    PubMed Central  PubMed  Google Scholar 

  • Smith PH, Uhlrich DJ, Manning KA, Banks MI (2012) Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus. J Comp Neurol 520(1):34–51. doi:10.1002/cne.22682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sonnadara RR, Alain C, Trainor LJ (2006) Occasional changes in sound location enhance middle latency evoked responses. Brain Res 1076(1):187–192. doi:10.1016/j.brainres.2005.12.093

    CAS  PubMed  Google Scholar 

  • Suga N, Ma X (2003) Multiparametric corticofugal modulation and plasticity in the auditory system. Nat Rev Neurosci 4(10):783–794. doi:10.1038/nrn1222nrn1222

    CAS  PubMed  Google Scholar 

  • Sun X, Xia Q, Lai CH, Shum DK, Chan YS, He J (2007) Corticofugal modulation of acoustically induced fos expression in the rat auditory pathway. J Comp Neurol 501(4):509–525. doi:10.1002/cne.21249

    CAS  PubMed  Google Scholar 

  • Szymanski FD, Garcia-Lazaro JA, Schnupp JW (2009) Current source density profiles of stimulus-specific adaptation in rat auditory cortex. J Neurophysiol 102(3):1483–1490. doi:10.1152/jn.00240.2009

    PubMed  Google Scholar 

  • Taaseh N, Yaron A, Nelken I (2011) Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One 6(8):e23369. doi:10.1371/journal.pone.0023369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas JM, Morse C, Kishline L, O’Brien-Lambert A, Simonton A, Miller KE, Covey E (2012) Stimulus-specific adaptation in specialized neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. Hear Res 291(1–2):34–40. doi:10.1016/j.heares.2012.06.004

    PubMed  Google Scholar 

  • Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6(4):391–398. doi:10.1038/nn1032

    CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24(46):10440–10453. doi:10.1523/JNEUROSCI.1905-04.2004

    CAS  PubMed  Google Scholar 

  • Umbricht D, Vyssotki D, Latanov A, Nitsch R, Lipp HP (2005) Deviance-related electrophysiological activity in mice: is there mismatch negativity in mice? Clin Neurophysiol 116(2):353–363. doi:10.1016/j.clinph.2004.08.015

    CAS  PubMed  Google Scholar 

  • van Zuijen TL, Simoens VL, Paavilainen P, Näätänen R, Tervaniemi M (2006) Implicit, intuitive, and explicit knowledge of abstract regularities in a sound sequence: an event-related brain potential study. J Cognitive Neurosci 18(8):1292–1303. doi:10.1162/jocn.2006.18.8.1292

    Google Scholar 

  • Varela JA, Sen K, Gibson J, Fost J, Abbott LF, Nelson SB (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17(20):7926–7940

    CAS  PubMed  Google Scholar 

  • Villa AE, Rouiller EM, Simm GM, Zurita P, de Ribaupierre Y, de Ribaupierre F (1991) Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp Brain Res 86(3):506–517

    CAS  PubMed  Google Scholar 

  • Villa AE, Tetko IV, Dutoit P, De Ribaupierre Y, De Ribaupierre F (1999) Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation. J Neurosci Methods 86(2):161–178

    CAS  PubMed  Google Scholar 

  • Virtala P, Berg V, Kivioja M, Purhonen J, Salmenkivi M, Paavilainen P, Tervaniemi M (2011) The preattentive processing of major vs. minor chords in the human brain: an event-related potential study. Neurosci Lett 487(3):406–410. doi:10.1016/j.neulet.2010.10.066

    CAS  PubMed  Google Scholar 

  • von der Behrens W, Bauerle P, Kossl M, Gaese BH (2009) Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. J Neurosci 29(44):13837–13849. doi:10.1523/JNEUROSCI.3475-09.2009

    PubMed  Google Scholar 

  • Wark B, Lundstrom BN, Fairhall A (2007) Sensory adaptation. Curr Opin Neurobiol 17(4):423–429. doi:10.1016/j.conb.2007.07.001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe T, Yanagisawa K, Kanzaki J, Katsuki Y (1966) Cortical efferent flow influencing unit responses of medial geniculate body to sound stimulation. Exp Brain Res 2(4):302–317

    CAS  PubMed  Google Scholar 

  • Weedman DL, Ryugo DK (1996) Pyramidal cells in primary auditory cortex project to cochlear nucleus in rat. Brain Res 706(1):97–102

    CAS  PubMed  Google Scholar 

  • Weinberger NM (2011) The medial geniculate, not the amygdala, as the root of auditory fear conditioning. Hear Res 274(1–2):61–74. doi:10.1016/j.heares.2010.03.093

    PubMed Central  PubMed  Google Scholar 

  • Weinberger NM, Bakin JS (1998) Research on auditory cortex plasticity. Science 280(5367):1174

    CAS  PubMed  Google Scholar 

  • Weinberger NM, Javid R, Lepan B (1995) Heterosynaptic long-term facilitation of sensory-evoked responses in the auditory cortex by stimulation of the magnocellular medial geniculate body in guinea pigs. Behav Neurosci 109(1):10–17

    CAS  PubMed  Google Scholar 

  • Wenstrup JJ, Larue DT, Winer JA (1994) Projections of physiologically defined subdivisions of the inferior colliculus in the mustached bat: targets in the medial geniculate body and extrathalamic nuclei. J Comp Neurol 346(2):207–236. doi:10.1002/cne.903460204

    CAS  PubMed  Google Scholar 

  • Wepsic JG (1966) Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Exp Neurol 15(3):299–318

    CAS  PubMed  Google Scholar 

  • Winer JA (2006) Decoding the auditory corticofugal systems. Hear Res 212(1–2):1–8

    PubMed  Google Scholar 

  • Winer JA, Lee CC (2007) The distributed auditory cortex. Hear Res 229(1–2):3–13. doi:10.1016/j.heares.2007.01.017

    PubMed Central  PubMed  Google Scholar 

  • Winer JA, Morest DK (1983a) The medial division of the medial geniculate body of the cat: implications for thalamic organization. J Neurosci 3(12):2629–2651

    CAS  PubMed  Google Scholar 

  • Winer JA, Morest DK (1983b) The neuronal architecture of the dorsal division of the medial geniculate body of the cat. A study with the rapid Golgi method. J Comp Neurol 221(1):1–30. doi:10.1002/cne.902210102

    CAS  PubMed  Google Scholar 

  • Winer JA, Prieto JJ (2001) Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons. J Comp Neurol 434(4):379–412

    CAS  PubMed  Google Scholar 

  • Winer JA, Wenstrup JJ (1994) Cytoarchitecture of the medial geniculate body in the mustached bat (Pteronotus parnellii). J Comp Neurol 346(2):161–182. doi:10.1002/cne.903460202

    CAS  PubMed  Google Scholar 

  • Winer JA, Saint Marie RL, Larue DT, Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci USA 93(15):8005–8010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winer JA, Kelly JB, Larue DT (1999) Neural architecture of the rat medial geniculate body. Hear Res 130(1–2):19–41

    CAS  PubMed  Google Scholar 

  • Winer JA, Diehl JJ, Larue DT (2001) Projections of auditory cortex to the medial geniculate body of the cat. J Comp Neurol 430(1):27–55. doi:10.1002/1096-9861(20010129)430:1<27:AID-CNE1013>3.0.CO;2-8

    CAS  PubMed  Google Scholar 

  • Winer JA, Miller LM, Lee CC, Schreiner CE (2005) Auditory thalamocortical transformation: structure and function. Trends Neurosci 28(5):255–263. doi:10.1016/j.tins.2005.03.009

    CAS  PubMed  Google Scholar 

  • Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13(12):532–540. doi:10.1016/j.tics.2009.09.003

    PubMed  Google Scholar 

  • Xiao Z, Suga N (2002) Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci 5(1):57–63. doi:10.1038/nn786nn786

    CAS  PubMed  Google Scholar 

  • Yaron A, Hershenhoren I, Nelken I (2012) Sensitivity to complex statistical regularities in rat auditory cortex. Neuron 76(3):603–615. doi:10.1016/j.neuron.2012.08.025

    CAS  PubMed  Google Scholar 

  • Yu YQ, Xiong Y, Chan YS, He J (2004) In vivo intracellular responses of the medial geniculate neurones to acoustic stimuli in anaesthetized guinea pigs. J Physiol 560(Pt 1):191–205. doi:10.1113/jphysiol.2004.067678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu XJ, Xu XX, He S, He J (2009) Change detection by thalamic reticular neurons. Nat Neurosci 12(9):1165–1170. doi:10.1038/nn.2373

    CAS  PubMed  Google Scholar 

  • Zhang Z, Liu CH, Yu YQ, Fujimoto K, Chan YS, He J (2008) Corticofugal projection inhibits the auditory thalamus through the thalamic reticular nucleus. J Neurophysiol 99(6):2938–2945. doi:10.1152/jn.00002.2008

    PubMed  Google Scholar 

  • Zhao L, Liu Y, Shen L, Feng L, Hong B (2011) Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat. Neuroscience 181:163–174. doi:10.1016/j.neuroscience.2011.01.060

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Nell Cant for her constructive comments and corrections on a previous version. Financial support was provided by the Spanish MEC (BFU2009-07286) and EU (EUI2009-04083, in the framework of the ERA-NET NEURON Network of European Funding for Neuroscience Research) to M.S.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel S. Malmierca.

Additional information

This is one of several papers published together in Brain Topography in the “Special Issue: Mismatch Negativity”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antunes, F.M., Malmierca, M.S. An Overview of Stimulus-Specific Adaptation in the Auditory Thalamus. Brain Topogr 27, 480–499 (2014). https://doi.org/10.1007/s10548-013-0342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0342-6

Keywords

Navigation