Skip to main content
Log in

Visual Mismatch Negativity and Categorization

  • Review
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Visual mismatch negativity (vMMN) component of event-related potentials is elicited by stimuli violating the category rule of stimulus sequences, even if such stimuli are outside the focus of attention. Category-related vMMN emerges to colors, and color-related vMMN is sensitive to language-related effects. A higher-order perceptual category, bilateral symmetry is also represented in the memory processes underlying vMMN. As a relatively large body of research shows, violating the emotional category of human faces elicits vMMN. Another face-related category sensitive to the violation of regular presentation is gender. Finally, vMMN was elicited to the laterality of hands. As results on category-related vMMN show, stimulus representation in the non-conscious change detection system is fairly complex, and it is not restricted to the registration of elementary perceptual regularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In the oddball sequences the interval between two standards is shorter than the interval between two deviants. As a function of inter-stimulus interval the amplitude of some ERP components increase. Therefore standard stimuli may elicit smaller negative components than the deviant, i.e., deviant minus standard difference potential would be negative. The relationship between the mismatch components and the refractoriness of ERP components (particularly N1 refractoriness) is discussed in detail in the auditory modality (May and Tiitinen 2010; Näätänen et al. 2005), and in some visual studies (e.g. Kenemans et al. 2003; Kimura et al. 2009). The refractoriness issue is a central topic of vMMN research, but it is outside the scope of the present review.

References

  • Adolphs R (2002) Recognizing emotions from facial expressions: psychological and neurological mechanisms. Behav Cogn Neurosci Rev 1:21–62

    Article  PubMed  Google Scholar 

  • Alho K, Woods DL, Algazi A, Näätänen R (1992) Intermodal selective attention. II. Effects of attentional load on processing auditory and visual stimuli in central space. Electroencephalogr Clin Neurophysiol 82:356–368

    Article  CAS  PubMed  Google Scholar 

  • Astikainen P, Hietanen JK (2009) Event-related potentials to task-irrelevant changes in facial expressions. Behav Brain Funct 5:30

    Article  PubMed Central  PubMed  Google Scholar 

  • Athanasopoulos P, Dering B, Wiggett A, Kuipers JR, Thierry G (2010) Perceptual shift in bilingualism: brain potentials reveal plasticity in pre-attentive colour perception. Cognition 116:437–443

    Article  PubMed  Google Scholar 

  • Chang Y, Xu J, Shi N, Zang B, Zhao L (2010) Dysfunction of processing task-irrelevant emotional faces in major depressive disorder patients revealed by expression-related visual MMN. Neurosci Lett 472:33–37

    Article  CAS  PubMed  Google Scholar 

  • Clifford A, Holmes A, Davies IRL, Franklin A (2010) Color categories affect pre-attentive color perception. Biol Psychol 85:275–282

    Article  PubMed  Google Scholar 

  • Czigler I (2007) Visual mismatch negativity-violation of non attended environmental regularities. J Psychophysiol 21:224–230

    Article  Google Scholar 

  • Czigler I, Csibra G (1990) Event-related potentials in a visual discrimination task: negative waves related to detection and attention. Psychophysiol 27:669–676

    Article  CAS  Google Scholar 

  • Czigler I, Csibra G (1992) Event-related potentials and the identification of deviant visual stimuli. Psychophysiol 29:471–484

    Article  CAS  Google Scholar 

  • Delorme G, Richard G, Fabre-Thorpe M (2000) Ultra-rapid categorisation of natural scenes does not rely on color cues: a study im monkeys and humans. Vision Res 40:2187–2200

    Article  CAS  PubMed  Google Scholar 

  • Eimer M (2011) The face-sensitive N170 component of the event-related potentials. In: Calder AJ, Rhodes G, Johnson MN, Haxby JV (eds) The Oxford handbook of face perception. Oxford University Press, Oxford, pp 329–344

    Google Scholar 

  • Ekman P (1992) Are there basic emotions? Psychol Rev 99:550–553

    Article  CAS  PubMed  Google Scholar 

  • Files BT, Auer ET, Bernstein LE (2013) The visual mismatch negativity elicited with visual speech stimuli. Front Hum Neurosci 7:371

    Article  PubMed Central  PubMed  Google Scholar 

  • Fize D, Boulanouar Y, Chatel JP, Rajneva M, Fabre-Thorpe S, Thorpe SJ (2000) Brain areas involved in rapid categorization of natural images: an event-related fMRI study. Neuroimage 11:634–643

    Article  CAS  PubMed  Google Scholar 

  • Fodor JA (1983) The modularity of mind: an essay in faculty psychology. MIT Press, Cambridge

    Google Scholar 

  • Fonteneau E, Davidoff J (2007) Neural correlated of color categories. Neuroreport 18:1223–1327

    Article  Google Scholar 

  • Gayle LC, Gal D, Kieffaber PD (2012) Measuring affective reactivity in individuals with autism spectrum personality traits using the visual mismatch negativity event-related brain potential. Front Hum Neurosci 6:334

    Article  PubMed Central  PubMed  Google Scholar 

  • Kay P, Regier T (2006) Language, though and color: recent developments. Trends Cogn Sci 10:51–54

    Article  PubMed  Google Scholar 

  • Kecskés-Kovács K, Sulykos I, Czigler I (2013a) Visual mismatch negativity is sensitive to symmetry as a perceptual category. Eur J Neurosci 37:662–667

    Article  PubMed  Google Scholar 

  • Kecskés-Kovács K, Sulykos I, Czigler I (2013b) Gender of faces is automatically detected: a visual mismatch negativity study. Front Hum Neurosci 7:523

    Google Scholar 

  • Kenemans JL, Jong TG, Verbaten MN (2003) Detection of visual change: mismatch or rareness? Neuroreport 14:1239–1242

    Article  PubMed  Google Scholar 

  • Kimura M (2012) Visual mismatch negativity and unintentional temporal-context-based prediction in vision. Int J Psychophysiol 83:144–155

    Article  PubMed  Google Scholar 

  • Kimura M, Katayama J, Murohashi H (2006) Independent processing of visual stimulus changes in ventral and dorsal stream features indexed by an early positive difference in event-related brain potentials. Int J Psychophysiol 59:141–150

    Article  PubMed  Google Scholar 

  • Kimura M, Katayama J, Ohira H, Schröger E (2009) Visual mismatch negativity: new evidence from the equiprobable paradigm. Psychophysiol 46:402–409

    Google Scholar 

  • Kimura M, Schröger E, Czigler I (2011) Visual mismatch negativity and its importance in visual cognitive sciences. Neuroreport 22:669–673

    Google Scholar 

  • Li X, Lu Y, Sun G, Gao L, Zhao L (2012) Visual mismatch negativity elicited by facial expressions: new evidence from the equiprobable paradigm. Behav Brain Funct 8:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Maekawa T, Hirano S, Onitsuka T (2012) Auditory and visual mismatch negativity in psychiatric disorders: a review. Curr Psychiatr Res 8:97–105

    Article  Google Scholar 

  • May PJC, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiol 47:66–122

    Article  Google Scholar 

  • Mo L, Xu G, Kay P, Tan LH (2011) Electrophysiological evidence for the left-lateralized effect of language on preattentive categorical perception of color. Proc Natl Acad Sci USA 108:14026–14030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Näätänen R, Jacobsen T, Winkler I (2005) Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Psychophysiol 42:25–32

    Article  Google Scholar 

  • Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590

    Article  PubMed  Google Scholar 

  • Nyman G, Alho K, Laurinen P, Paavilainen P, Radil T, Reinikainen K, Sams M, Näätänen R (1990) Mismatch negativity (MMN) for sequences of auditory and visual stimuli: evidence for a mechanism specific to the auditory modality. Electroencephalogr Clin Neurophysiol 77:436–444

    Article  CAS  PubMed  Google Scholar 

  • Palmer SE (1999) Vision Sci. MIT Press, Cambridge

    Google Scholar 

  • Pazo-Alvarez P, Cadaveira F, Amenedo E (2003) MMN in the visual modality: a review. Biol Psychol 63:199–236

    Article  CAS  PubMed  Google Scholar 

  • Simons DJ, Levin DT (1997) Change blindness. Trends Cogn Sci 1:78–89

    Article  Google Scholar 

  • Stefanics G, Czigler I (2012) Automatic prediction error response to hands with unexpected laterality: an electrophysiological study. Neuroimage 63:253–261

    Article  PubMed  Google Scholar 

  • Stefanics G, Csukly G, Komlósi S, Czobor P, Czigler I (2012) Processing of unattended facial emotions: a visual mismatch negativity study. Neuroimage 59:3042–3049

    Article  PubMed  Google Scholar 

  • Susac A, Ilmoniemi RJ, Pihko E, Ranken D, Supek S (2010) Early cortical responses are sensitive to changes in face stimuli. Brain Res 1346:155–164

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Xu J, Chang Y, Zheng Y, Shi N, Pang XM, Zhang BW (2013) Visual mismatch negativity in the detection of facial emotions in patients with panic disorder. NeuroReport 24:207–211

    Article  PubMed  Google Scholar 

  • Thierry G, Athanasopoulos P, Wiggett A, Dering B, Kuipers J-R (2009) Unconscious effects of language-specific terminology on pre-attentive colour perception. Proc Natl Acad Sci USA 106:4567–4570

    Google Scholar 

  • Tyler CW, Hardage L (1996) Mirror symmetry detection: predominance of second order pattern processing throughout the visual field. In: Tyler CW (ed) Human symmetry perception and its computational analysis. Utrecht, VSP, pp 157–171

    Google Scholar 

  • Van Rullen R, Thorpe SJ (2001) Is it a bird? Is it a plane? Ultra-rapid categorization of natural and artefactual objects. Perception 30:655–668

    Article  Google Scholar 

  • Wang X-D, Liu A-P, Wu Y–Y, Wang P (2013) Rapid extraction of lexical tone phonology in Chinese characters: a visual mismatch negativity study. PLoS One 8(2):e56778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei J-H, Chan T-C, Luo Y-J (2002) A modified oddball paradigm “cross-modal delayed response” and the research on mismatch negativity. Brain Res Bull 57:221–230

    Google Scholar 

  • Winkler I, Czigler I (2012) Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) link predictive coding theories to perceptual object representations. Int J Psychophysiol 83:132–143

    Article  PubMed  Google Scholar 

  • Zhao L, Li J (2006) Visual mismatch negativity elicited by facial expressions under non-attentional condition. Neurosci Lett 401:126–131

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Hungarian Research Found (OTKA) 104462. I thank István Sulykos and Krisztina Kecskés-Kovács for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Czigler.

Additional information

This is one of several papers published together in Brain Topography in the ‘‘Special Issue: Mismatch Negativity”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czigler, I. Visual Mismatch Negativity and Categorization. Brain Topogr 27, 590–598 (2014). https://doi.org/10.1007/s10548-013-0316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0316-8

Keywords

Navigation