Skip to main content
Log in

Influence of a Silastic ECoG Grid on EEG/ECoG Based Source Analysis

Brain Topography Aims and scope Submit manuscript

Abstract

The simultaneous evaluation of the local electrocorticogram (ECoG) and the more broadly distributed electroencephalogram (EEG) from humans undergoing evaluation for epilepsy surgery has been shown to further the understanding of how pathologies give rise to spontaneous seizures. However, a well-known problem is that the disruption of the conducting properties of the brain coverings can render simultaneous scalp and intracranial recordings unrepresentative of the habitual EEG. The ECoG electrodes for measuring the potential on the surface of the cortex are commonly embedded into one or more sheets of a silastic material. These highly resistive silastic sheets influence the volume conduction and might therefore also influence the scalp EEG and ECoG measurements. We carried out a computer simulation study to examine how the scalp EEG and the ECoG, as well as the source reconstruction therefrom, employing equivalent current dipole estimation methods, are affected by the insulating ECoG grids. The finite element method with high quality tetrahedral meshes, generated using a constrained Delaunay tetrahedralization meshing approach, was used to model the volume conductor that incorporates the very thin ECoG sheets. It is shown that the insulating silastic substrate of the ECoG grids can have a large impact on the scalp potential and on source reconstruction from scalp EEG data measured in the presence of the grids. The reconstruction errors are characterized with regard to the location of the source in the brain and the mislocalization tendency. In addition, we found a non-negligible influence of the insulating grids on ECoG based source analysis. We conclude, that the thin insulating ECoG sheets should be taken into account, when performing source analysis of simultaneously measured ECoG and scalp EEG data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhtari M, Bryant H, Mamelak A, Flynn E, Heller L, Shih J, Mandelkem M, Matlachov A, Ranken D, Best E, et al (2002) Conductivities of three-layer live human skull. Brain Topogr 14(3):151–167

    Article  PubMed  CAS  Google Scholar 

  • Alarcon G, Kissani N, Dad M, Elwes R, Ekanayake J, Hennessy M, Koutroumanidis M, Binnie C, Polkey C (2001) Lateralizing and localizing values of ictal onset recorded on the scalp: evidence from simultaneous recordings with intracranial foramen ovale electrodes. Epilepsia 42(11):1426–1437

    Article  PubMed  CAS  Google Scholar 

  • Bast T, Oezkan O, Rona S, Stippich C, Seitz A, Rupp A, Fauser S, Zentner J, Rating D, Scherg M (2004) EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia 45(6):621–631

    Article  PubMed  Google Scholar 

  • Bast T, Boppel T, Rupp A, Harting I, Hoechstetter K, Fauser S, Schulze-Bonhage A, Rating D, Scherg M (2006) Noninvasive source localization of interictal EEG spikes: effects of signal-to-noise ratio and averaging. J Clin Neurophysiol 23(6):487–497

    Article  PubMed  Google Scholar 

  • Baumann S, Wozny D, Kelly S, Meno F (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner C, Lindinger G, Ebner A, Aull S, Serles W, Olbrich A, Lurger S, Czech T, Burgess R, Luders H (1995) Propagation of interictal epileptic activity in temporal lobe epilepsy. Neurology 45(1):118–122

    Article  PubMed  CAS  Google Scholar 

  • Bertrand O, Thévenet M, Perrin F (1991) 3D finite element method in brain electrical activity studies. In: Nenonen J, Rajala H, Katila T (eds) Biomagnetic localization and 3D modelling. Report of the Dep. of Tech. Physics, Helsinki University of Technology, pp 154–171

  • Braess D (2007) Finite elements: theory, fast solvers and applications in solid mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Buchner H, Knoll G, Fuchs M, Rienäcker A, Beckmann R, Wagner M, Silny J, Pesch J (1997) Inverse localization of electric dipole current sources in finite element models of the human head. Electroencephalogr Clin Neurophysiol 102:267–278

    Article  PubMed  CAS  Google Scholar 

  • Cook M, Koles Z (2006) A high-resolution anisotropic finite-volume head model for EEG source analysis. In: Proceedings of the 28th annual international conference of the IEEE engineering in medicine and biology society, pp 4536–4539

  • Dannhauer M, Lanfer B, Wolters C, Knösche T (2011) Modeling of the human skull in EEG source analysis. Hum Brain Mapp 32(9):1383–1399. doi:10.1002/hbm.21114

  • de Munck J, Peters M (1993) A fast method to compute the potential in the multisphere model. IEEE Trans Biomed Eng 40(11):1166–74

    Article  PubMed  Google Scholar 

  • Dümpelmann M, Fell J, Wellmer J, Urbach H, Elger C (2009) 3D source localization derived from subdural strip and grid electrodes: a simulation study. Clin Neurophysiol 120:1061–1069

    Article  PubMed  Google Scholar 

  • Ebersole J (1999) Non-invasive pre-surgical evaluation with EEG/MEG source analysis. Electroencephalogr Clin Neurophysiol Suppl 50:167–174

    PubMed  CAS  Google Scholar 

  • Fuchs M, Wagner M, Kastner J (2007) Development of volume conductor and source models to localize epileptic foci. J Clin Neurophysiol 24(2):101–119 doi:10.1097/WNP.0b013e318038fb3e

    Article  PubMed  Google Scholar 

  • Güllmar D, Haueisen J, Reichenbach J (2010) Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. a high-resolution whole head simulation study. NeuroImage. doi:10.1016/j.neuroimage.2010.02.014

  • Hackbusch W (1992) Elliptic differential equations. Springer, Berlin

    Book  Google Scholar 

  • Hallez H, Vanrumste B, Hese PV, D’Asseler Y, Lemahieu I, de Walle RV (2005) A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Phys Med Biol 50:3787–3806

    Article  PubMed  Google Scholar 

  • Hämäläinen M, Ilmoniemi R (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comp 32:35–42

    Article  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa O (1993) Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  • Huiskamp G, Maintz J, Wieneke G, Viergever M, van Huffelen A (1997) The influence of the use of realistic head geometry in the dipole localization of interictal spike activity in MTLE patients. Biomed Tech 42:84–87

    Google Scholar 

  • Huiskamp G, Vroeijenstijn M, van Dijk R, Wieneke G, van Huffelen A (1999) The need for correct realistic geometry in the inverse EEG problem. IEEE Trans Biomed Eng 46(11):1281–1287

    Article  PubMed  CAS  Google Scholar 

  • Huiskamp G, Oostendorp T, Hoekema R, Leijten F (2000) Simultaneous eeg/meg and ecog source characterization of interictal spikes. In: BIOMAG2000, Proceedings of the 12th international conference on biomagnetism. http://biomag2000.hut.fi

  • Knösche T (1997) Solutions of the neuroelectromagnetic inverse problem. Ph.D. thesis, University of Twente, The Netherlands

  • Kobayashi K, Merlet I, Gotman J (2001) Separation of spikes from background by independent component analysis with dipole modeling and comparison to intracranial recordings. Clin Neurophysiol 112(3):405–413

    Article  PubMed  CAS  Google Scholar 

  • Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulo T (2005) A common formalism for the integral formulations of the forward EEG problem. IEEE Trans Med Imag 24(1):12–18

    Article  Google Scholar 

  • Lai Y, van Drongelen W, Ding L, Hecox K, Towle V, Frim D, He B (2005) Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clin Neurophysiol 116:456–465

    Article  PubMed  CAS  Google Scholar 

  • Lantz G, Holub H, Ryding E, Rosen I (1996) Simultaneous intracranial and extracranial recordings of interictal epileptiform activity in patients with drug resistent partial epilepsy: patterns of conduction and results from dipole reconstructions. Electroencephalogr Clin Neurophysiol 99:69–78

    Article  PubMed  CAS  Google Scholar 

  • Lantz G, de Peralta MG, Gonzalez A, Michel C (2001) Noninvasive localization of electromagnetic epileptic activity. II. Demonstration of sublobar accuracy in patients with simultaneous surface and depth recordings. Brain Topogr 14(2):139–147

    Article  PubMed  CAS  Google Scholar 

  • Law S (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6(2):99–109

    Article  PubMed  CAS  Google Scholar 

  • Leeman B, Cole A (2008) Advancements in the treatment of epilepsy. Ann Rev Med 59(1), 503–523. doi:10.1146/annurev.med.58.071105.110848. http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.med.58.071105.110848

    Google Scholar 

  • Lew S, Wolters C, Anwander A, Makeig S, MacLeod R (2009) Improved EEG source analysis using low resolution conductivity estimation in a four-compartment finite element head model. Hum Brain Mapp 30(9), 2862–2878. http://dx.doi.org/10.1002/hbm.20714

  • Lew S, Wolters C, Dierkes T, Röer C, MacLeod R (2009) Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis. Applied Numerical Mathematics 59(8):1970–1988. doi:10.1016/j.apnum.2009.02.006

  • Maes F, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imag 16(2):187–198

    Article  CAS  Google Scholar 

  • Meijs J, Weier O, Peters M, van Oosterom A (1989) On the numerical accuracy of the boundary element method. IEEE Trans Biomed Eng 36(10):1038–1049

    Article  PubMed  CAS  Google Scholar 

  • Merlet I, Gotman J (1999) Reliability of dipole models of epileptic spikes. Clin Neurophysiol 110(6):1013–1028

    Article  PubMed  CAS  Google Scholar 

  • Michel C, Murray M, Lantz G, Gonzalez S, Spinelli L, de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115: 2195–2222. Invited review

    Google Scholar 

  • Mikuni N, Nagamine T, Ikeda A, Terada K, Taki W, Kimura J, Kikuchi H, Shibasaki H (1997) Simultaneous recording of epileptiform discharges by MEG and subdural electrodes in temporal lobe epilepsy. NeuroImage 5(4):298–306. doi:10.1006/nimg.1997.0272. http://www.sciencedirect.com/science/article/pii/S105381199790272X

    Google Scholar 

  • Mosher J, Lewis P, Leahy R (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39(6):541–557

    Article  PubMed  CAS  Google Scholar 

  • Neuroscan: CURRY. CURrent Reconstruction and Imaging (2009)

  • Pataraia E, Lindinger G, Deecke L, Mayer D, Baumgartner C (2005) Combined MEG/EEG analysis of the interictal spike complex in mesial temporal lobe epilepsy. NeuroImage 24:607–614

    Article  PubMed  Google Scholar 

  • Penfield W (1950) The surgical therapy of temporal lobe seizures. Trans Am Neurol Assoc 51:146–149

    PubMed  CAS  Google Scholar 

  • Pham D, Prince J (1998) An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit Lett 20:57–68

    Article  Google Scholar 

  • Plummer C, Harvey A, Cook M (2008) EEG source localization in focal epilepsy: where are we now?. Epilepsia 49(2):201–218

    Article  PubMed  Google Scholar 

  • Pursiainen S, Sorrentino A, Campi C, Piana M (2011) Forward simulation and inverse dipole localization with the lowest order raviart-thomas elements for electroencephalography. Inverse Problems 27(4). doi:10.1088/0266-5611/27/4/045003

  • Ramon C, Schimpf P, Haueisen J, Holmes M, Ishimaru A (2004) Role of soft bone, CSF and gray matter in EEG simulations. Brain Topogr 16(4):245–248

    Article  PubMed  Google Scholar 

  • Ray A, Tao J, Hawes-Ebersole S, Ebersole J (2007) Localizing value of scalp EEG spikes: a simultaneous scalp and intracranial study. J Clin Neurophysiol 118(1):69–79

    Article  Google Scholar 

  • Röer C (2008) Source analysis of simultaneous EEG and ECoG mesurements in presurgical epilepsy diagnosis. Diplomarbeit in physik, Institut für Biomagnetismus und Biosignalanalyse, Universitätsklinikum Münster

    Google Scholar 

  • Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain Behav Evol 124(Pt 9):1683–1700

    Article  PubMed  CAS  Google Scholar 

  • Roth B, Ko D, von Albertini-Carletti I, Scaffidi D, Sato S (1997) Dipole localization in patients with epilepsy using the realistically shaped head model. Electroencephalogr Clin Neurophysiol 102:159–166

    Article  PubMed  CAS  Google Scholar 

  • Rullmann M, Anwander A, Dannhauer M, Warfield S, Duffy F, Wolters C (2009) EEG source analysis of epileptiform activity using a 1mm anisotropic hexahedra finite element head model. NeuroImage 44(2):399–410. doi:10.1016/j.neuroimage.2008.09.009. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642992/

  • Salayev K, Nakasato N, Ishitobi M, Shamoto H, Kanno A, Iinuma K (2006) Spike orientation may predict epileptogenic side across cerebral sulci containing the estimated equivalent dipole. Clin Neurophysiol 117:1836–43

    Article  PubMed  Google Scholar 

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11–22

    Article  PubMed  CAS  Google Scholar 

  • Scherg M, Von Cramon D (1986) Evoked dipole source potentials of the human auditory cortex. Electroencephalogr Clin Neurophysiol 65(5):344–60

    Article  PubMed  CAS  Google Scholar 

  • Scherg M, Bast T, Berg P (1999) Multiple source analysis of interictal spikes: goals, requirements, and clinical value. J Clin Neurophysiol 16(3):214–224

    Article  PubMed  CAS  Google Scholar 

  • Schimpf P, Haynor D, Kim Y (1996) Object-free adaptive meshing in highly heterogeneous 3-D domains. Int J Biomed Comput 40(3):209–225. doi:10.1016/0020-7101(95)01146-3. http://www.sciencedirect.com/science/article/pii/0020710195011463

    Google Scholar 

  • Schwarz H (1991) Methode der finiten Elemente. B.G.Teubner, Stuttgart

    Book  Google Scholar 

  • Scientific Computing and Imaging Institute (SCI): SCIRun: A scientific computing problem solving environment. http://www.scirun.org

  • Si H (2008) Adaptive tetrahedral mesh generation by constrained Delaunay refinement. Int J Numer Methods Eng 75(7):856–880. doi:10.1002/nme.2318

    Google Scholar 

  • Si H (2009) TetGen—a quality tetrahedral mesh generator and three-dimensional Delaunay triangulator, user’s manual. Tech. rep., Weierstra\({\ss}\)-Institut für Angewandte Analysis und Stochastik, Berlin. http://tetgen.berlios.de

  • Si H, Gärtner K (2005) Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations. In: Proceedings of the 14th international meshing roundtable, pp 147–163. Sandia National Laboratories

  • SimBio Development Group: SimBio: A generic environment for bio-numerical simulations. online, http://www.mrt.uni-jena.de/simbio. Accessed 15 June 2012

  • Soza G (2005) Registration and simulation for the analysis of intraoperative brain shift. Ph.D. thesis, Faculty of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg

  • Stefan H, Hummel C, Scheler G, Genow A, Druschky K, Tilz C, Kaltenhauser M, Hopfengartner R, Buchfelder M, Romstock J (2003) Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain Behav Evol 126(Pt 11):2396–2405

    Article  PubMed  CAS  Google Scholar 

  • Tao J, Baldwin M, Hawes-Ebersole S, Ebersole J (2007a) Cortical substrates of scalp EEG epileptiform discharges. J Clin Neurophysiol 24(2):96–100

    Article  PubMed  Google Scholar 

  • Tao J, Baldwin M, Ray A, Hawes-Ebersole S, Ebersole J (2007b) The impact of cerebral source area and synchrony on recording scalp electroencephalographyictal patterns. Epilepsia 48(11):2167–2176

    Article  PubMed  Google Scholar 

  • Vallaghe S, Papadopoulo T (2010) A trilinear immersed finite element method for solving the electroencephalography forward problem. SIAM J Sci Comput 32(4):2379 doi:10.1137/09075038X

    Article  Google Scholar 

  • van den Broek S, Reinders F, Donderwinkel M, Peters M (1998) Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol 106:522–534

    Article  PubMed  Google Scholar 

  • Waberski T, Gobbele R, Herrendorf G, Steinhoff B, Kolle R, Fuchs M, Paulus W, Buchner H (2000) Source reconstruction of mesial-temporal epileptiform activity: comparison of inverse techniques. Epilepsia 41(12):1574–583

    Article  PubMed  CAS  Google Scholar 

  • Weinstein D, Zhukov L, Johnson C (2000) Lead-field bases for electroencephalography source imaging. Ann Biomed Eng 28(9):1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Wiebe S, Blume W, Girvin J, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. New England J Med 345(5):311–318

    Article  CAS  Google Scholar 

  • Wolters C (2008) Finite element method based electro- and magnetoencephalography source analysis in the human brain. Habilitation in mathematics, Faculty of Mathematics and Natural Sciences, University of Münster, Germany

  • Wolters C, Grasedyck L, Hackbusch W (2004) Efficient computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem. Inverse Probl 20(4):1099–1116. doi:10.1088/0266-5611/20/4/007

    Article  Google Scholar 

  • Wolters C, Anwander A, Weinstein D, Koch M, Tricoche X, MacLeod R (2006) Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. NeuroImage 30(3):813–826. doi:10.1016/j.neuroimage.2005.10.014

    Article  PubMed  CAS  Google Scholar 

  • Wolters C, Anwander A, Berti G, Hartmann U (2007a) Geometry-adapted hexahedral meshes improve accuracy of finite element method based EEG source analysis. IEEE Trans Biomed Eng 54(8):1446–1453. doi:10.1109/TBME.2007.890736

    Article  PubMed  Google Scholar 

  • Wolters C, Köstler H, Möller C, Härtlein J, Grasedyck L, Hackbusch W (2007b) Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models. SIAM J Sci Comput 30(1):24–45. doi:10.1137/060659053

    Article  Google Scholar 

  • Zhang Y, Ding L, van Drongelen W, Hecox K, Frim D, He B (2006) A cortical potential imaging study from simultaneous extra- and intracranial electrical recordings by means of the finite element method. Neuroimage 31(4):1513–1524

    Article  PubMed  Google Scholar 

  • Zhang Y, van Drongelen W, Kohrman M, He B (2008) Three-dimensional brain current source reconstruction from intra-cranial ECoG recordings. NeuroImage 42(2):683–695. doi:10.1016/j.neuroimage.2008.04.263. http://www.sciencedirect.com/science/article/B6WNP-4SGKBB4-3/2/be9c5075b633a57b111b633e3203b58b

  • Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method. Its basis and fundamentals. Elsevier, Butterworth-Heinemann

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (WO1425/2-1, STE380/14-1). The authors would like to thank Chris Johnson, Tolga Tasdizen and Darby J. Van Uitert from the SCI Institute, University of Utah, Salt Lake City, USA, Gregory A. Worrell from the Department of Neurology and Division of Epilepsy, Mayo Clinic, Rochester, Minnesota, USA, and Scott Makeig from the Swartz Center for Computational Neuroscience, University of California San Diego, USA, for providing the necessary data for model construction and for their valuable help and the fruitful discussions with regard to this study. We would also like to thank the anonymous reviewers for their helpful critics and comments that significantly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Lanfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanfer, B., Röer, C., Scherg, M. et al. Influence of a Silastic ECoG Grid on EEG/ECoG Based Source Analysis. Brain Topogr 26, 212–228 (2013). https://doi.org/10.1007/s10548-012-0251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-012-0251-0

Keywords

Navigation