Skip to main content
Log in

Katabatic Flow: A Closed-Form Solution with Spatially-Varying Eddy Diffusivities

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The Nieuwstadt closed-form solution for the stationary Ekman layer is generalized for katabatic flows within the conceptual framework of the Prandtl model. The proposed solution is valid for spatially-varying eddy viscosity and diffusivity (O’Brien type) and constant Prandtl number (Pr). Variations in the velocity and buoyancy profiles are discussed as a function of the dimensionless model parameters \(z_0 \equiv \hat{z}_0 \hat{N}^2 Pr \sin {(\alpha )} |\hat{b}_\mathrm{s} |^{-1}\) and \(\lambda \equiv \hat{u}_{\mathrm{ref}}\hat{N} \sqrt{Pr} |\hat{b}_\mathrm{s} |^{-1}\), where \(\hat{z}_0\) is the hydrodynamic roughness length, \(\hat{N}\) is the Brunt-Väisälä frequency, \(\alpha \) is the surface sloping angle, \(\hat{b}_\mathrm{s}\) is the imposed surface buoyancy, and \(\hat{u}_{\mathrm{ref}}\) is a reference velocity scale used to define eddy diffusivities. Velocity and buoyancy profiles show significant variations in both phase and amplitude of extrema with respect to the classic constant \(\textit{K}\) model and with respect to a recent approximate analytic solution based on the Wentzel-Kramers-Brillouin theory. Near-wall regions are characterized by relatively stronger surface momentum and buoyancy gradients, whose magnitude is proportional to \(z_0\) and to \(\lambda \). In addition, slope-parallel momentum and buoyancy fluxes are reduced, the low-level jet is further displaced toward the wall, and its peak velocity depends on both \(z_0\) and \(\lambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Bender CM, Orszag SA (1979) Advanced mathematical methods for scientists and engineers. McGraw-Hill, New York, 593 pp

  • Burkholder B, Fedorovich E, Shapiro A (2011) Evaluating subgrid-scale models for large-eddy simulation of turbulent katabatic flow. Quality and reliability of large-eddy simulations II. ERCOFTAC series. Springer, Dordrecht, pp 149–160

  • Chu PC (1987) An instability theory of ice-air interaction for the formation of ice edge bands. J Geophys Res 92(C7):6966–6970

    Article  Google Scholar 

  • Defant F (1949) Zur theorie der hangwinde, nebst bemerkungen zur theorie der berg- und talwinde. Archiv für Meteorologie, Geophysik und Bioklimatologie Serie A 1:421–450

    Article  Google Scholar 

  • Fedorovich E, Shapiro A (2009a) Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys 57(4):981–1010

    Article  Google Scholar 

  • Fedorovich E, Shapiro A (2009b) Turbulent natural convection along a vertical plate immersed in a stably stratified fluid. J Fluid Mech 636:41–57

    Article  Google Scholar 

  • Greuell JW, Van den Broeke MR, Knap W, Reijmer C, Smeets P, Struijk I (1994) PASTEX: A glacio-meteorological experiment on the Pasterze (Austria). Institute forMarine and Atmospheric Research, Utrecht University, Utrecht, Technical report

  • Greuell W, Knap WH, Smeets PC (1997) Elevational changes in meteorological variables along a midlatitude glacier during summer. J Geophys Res 102(25):941–954

    Google Scholar 

  • Grisogono B, Oerlemans J (2001) Katabatic flow: analytic solution for gradually varying eddy diffusivities. J Atmos Sci 58(21):3349–3354

    Article  Google Scholar 

  • Grisogono B, Oerlemans J (2002) Justifying the WKB approximation in pure katabatic flows. Tellus 54(5):453–462

    Article  Google Scholar 

  • Grisogono B, Jurlina T, Večenaj Ž, Güttler I (2015) Weakly nonlinear Prandtl model for simple slope flows. Q J R Meteorol Soc 141(688):883–892

    Article  Google Scholar 

  • Gutman LN (1983) On the theory of the katabatic slope wind. Tellus 35A:213–218

    Article  Google Scholar 

  • Gutman LN, Malbakhov VM (1964) On the theory of the katabatic winds of Antarctica. Met Issled 9:150–155

    Google Scholar 

  • Lehner M, Whiteman CD, Hoch SW, Jensen D, Pardyjak ER, Leo LS, Di Sabatino S, Fernando HJS (2015) A case study of the nocturnal boundary layer evolution on a slope at the foot of a desert mountain. J Appl Meteorol Clim 54(4):732–751

    Article  Google Scholar 

  • Lykosov VN, Gutman LN (1972) Turbulent boundary layer above a sloping underlying surface. Proc USSR Acad Sci 8:799–809

    Google Scholar 

  • Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. Theor Comput Fluid Mech 11:263–279

    Article  Google Scholar 

  • Monti P, Fernando HJS, Princevac M, Chan WC, Kowalewski TA, Pardyjak ER (2002) Observations of flow and turbulence in the nocturnal boundary layer over a slope. J Atmos Sci 59(17):2513–2534

    Article  Google Scholar 

  • Morse PM, Feshbach H (1953) Methods of theoretical physics. Part I. McGraw-Hill, New York, 998 pp

  • Nadeau DF, Pardyjak ER, Higgins CW, Parlange MB (2013) Similarity scaling over a steep alpine slope. Boundary-Layer Meteorol 147(3):401–419

    Article  Google Scholar 

  • Nappo CJ, Shankar RK (1987) A model study of pure katabatic flows. Tellus 39(1):61–71

    Article  Google Scholar 

  • Nieuwstadt FTM (1983) On the solution of the stationary, baroclinic Ekman-layer equations with a finite boundary-layer height. Boundary-Layer Meteorol 26(4):377–390

    Article  Google Scholar 

  • Nylen TH, Fountain AG, Doran PT (2004) Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica. J Geophys Res 109(D3):1–9

    Article  Google Scholar 

  • O’Brien JJ (1970) A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J Atmos Sci 27(8):1213–1215

    Article  Google Scholar 

  • Oerlemans J (1994) Quantifying global warming from the retreat of glaciers. Science 264(5156):243–245

    Article  Google Scholar 

  • Oerlemans J (1998) The atmospheric boundary layer over melting glaciers. In: Clear and Cloudy boundary layers. Royal Netherlands Academy of Arts and Sciences, pp 129–153

  • Oerlemans J, Grisogono B (2002) Glacier winds and parameterisation of the related surface heat fluxes. Tellus 54(5):440–452

    Article  Google Scholar 

  • Oerlemans J, Vugts HF (1993) A meteorological experiment in the melting zone of the Greenland ice sheet. Bull Am Meteorol Soc 74(3):355–365

    Article  Google Scholar 

  • Oerlemans J, Björnsson H, Kuhn M, Obleitner F, Palsson F, Smeets CJPP, Vugts HF, Wolde JD (1999) Glacio-meteorological investigation on Vatnajokull, Iceland, summer 1996: an overview. Boundary-Layer Meteorol 92(1):3–24

    Article  Google Scholar 

  • Oldroyd HJ, Katul GG, Pardyjak ER, Parlange MB (2014) Momentum balance of katabatic flow on steep slopes covered with short vegetation. Geophys Res Lett 41(13):4761–4768

    Article  Google Scholar 

  • Oldroyd HJ, Pardyjak ER, Higgins CW, Parlange MB (2016a) Buoyant turbulent kinetic energy production in steep-slope katabatic flow. Boundary-Layer Meteorol. doi:10.1007/s10546-016-0184-3

  • Oldroyd HJ, Pardyjak ER, Huwald H, Parlange MB (2016b) Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain. Boundary-Layer Meteorol 159(3):539–565

    Article  Google Scholar 

  • Parish TR (1992) On the role of Antarctic katabatic winds in forcing large-scale tropospheric motions. J Atmos Sci 49(15):1374–1385

    Article  Google Scholar 

  • Parish TR, Bromwich DH (1991) Continental-scale simulation of the Antarctic katabatic wind regime. J Clim 4(2):135–146

    Article  Google Scholar 

  • Parish TR, Bromwich DH (1998) A case study of Antarctic katabatic wind interaction with large-scale forcing. Mon Weather Rev 126(1):199–209

    Article  Google Scholar 

  • Pielke RA (1984) Mesoscale numerical modeling. Adv Geophys 23:185–344

    Article  Google Scholar 

  • Prandtl L (1942) Führer durch die strömungslehre. Vieweg & Sohn, Braunschweig, 648 pp

  • Renfrew IA (2004) The dynamics of idealized katabatic flow over a moderate slope and ice shelf. Q J R Meteorol Soc 130(598):1023–1045

    Article  Google Scholar 

  • Renfrew IA, Anderson PS (2006) Profiles of katabatic flow in summer and winter over Coats Land, Antarctica. Q J R Meteorol Soc 132(616):779–802

    Article  Google Scholar 

  • Rotach MW, Zardi D (2007) On the boundary-layer structure over highly complex terrain: Key findings from MAP. Q J R Meteorol Soc 133(625):937–948

    Article  Google Scholar 

  • Shapiro A, Fedorovich E (2007) Katabatic flow along a differentially cooled sloping surface. J Fluid Mech 571:149–175

    Article  Google Scholar 

  • Smeets CJPP, Duynkerke PG, Vugts HF (1997) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part 1: a combination of katabatic and large-scale forcing. Boundary-Layer Meteorol 87:117–145

    Article  Google Scholar 

  • Smeets CJPP, Duynkerke PG, Vugts HF (2000) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part 2: pure katabatic forcing conditions. Boundary-Layer Meteorol 97:73–107

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

  • Temme NM (2007) Numerical aspects of special functions. Acta Numer 16:379–478

    Article  Google Scholar 

  • Veronis G (1970) The analogy between rotating and stratified fluids. Annu Rev Fluid Mech 2(1):37–66

    Article  Google Scholar 

  • Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. Atmosphere process over complex terrain. Meteor Monogr 45:5–42

    Google Scholar 

  • Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Mt Res Dev 21(1):355

    Google Scholar 

  • Zardi D, Serafin S (2015) An analytic solution for time-periodic thermally driven slope flows. Q J R Meteorol Soc 141(690):1968–1974

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Swiss National Science Foundation (SNSF-200021-134892), the Competence Center for Environmental Sustainability (CCES-SwissEx) of the ETH domain, and the NSERC Discovery Grant program. We are grateful to the reviewers whose comments helped to improve the overall quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Giometto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giometto, M.G., Grandi, R., Fang, J. et al. Katabatic Flow: A Closed-Form Solution with Spatially-Varying Eddy Diffusivities. Boundary-Layer Meteorol 162, 307–317 (2017). https://doi.org/10.1007/s10546-016-0196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0196-z

Keywords

Navigation