Skip to main content
Log in

Parametrization of Planetary Boundary-Layer Height with Helicity and Verification with Tropical Cyclone Prediction

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

To reduce the discrepancy between simulated and observed tropical cyclones, we consider a new parametrization scheme for planetary boundary-layer (PBL) height based on helicity, intended to provide an improved description of the overall helical structures of the tropical cyclone PBL simulated in a numerical model. This scheme was preliminarily tested in the Yonsei University (YSU) PBL scheme integrated within the National Center for Atmospheric Research Weather Research and Forecasting model. Based on verification of track simulations for seven tropical cyclones that made landfall over China, tropical cyclone Morakot (2009) was selected for further evaluation of the new scheme. Compared with the original scheme based on the Richardson number (Ri), the new scheme elevated the PBL height associated with intense convection, which is consistent with observation. Importantly, the new scheme improved the numerical simulation of intense rainfall by modulating the PBL environment for convection evolution. Furthermore, the PBL height and 2-m temperature over land at night, which are frequently overestimated by the original YSU scheme, were improved using the new scheme. Because of its effects on PBL structures and convection evolution, the simulation of tropical cyclone Morakot intensity was improved by the new scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J Atmos Sci 31:674–701

    Article  Google Scholar 

  • Black ML, Burpee RW, Marks FD Jr (1996) Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J Atmos Sci 53:1887–1909

    Article  Google Scholar 

  • Black PG, D’Asaro EA, Drennan WM, French JR, Niiler PP, Sanford TB, Terill EJ, Walsh EJ, Zhang J-A (2007) Air-sea exchange in hurrinces-Synthesis of observation from the coupled boundary layer air-sea transfer experiment. Bull Am Meteorol Soc 88:357–374

    Article  Google Scholar 

  • Blackadar AK (1979) High-resolution models of the planetary boundary layer. In: Advances in environmental science and engineering. Gordon and Briech Sci Publications, New York 1:50–85

  • Brown RA (1970) A secondary flow model for the planetary boundary layer. J Atmos Sci 27:742–757

    Article  Google Scholar 

  • Bryan GH, Rotunno R (2009) The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon Weather Rev 137:1770–1789

    Article  Google Scholar 

  • Busch NE, Chang SW, Anthes RA (1976) A multi-level model of the planetary boundary layer suitable for use with mesoscale dynamic models. J Appl Meteorol 15:909–919

    Article  Google Scholar 

  • Chen T, Tang Y-S, Wei C-H (2010) The Precipitation characteristics of Typhoon Morakot (2009) from radar analyses. Atmos Sci 38:39–61 (In Chinese)

    Google Scholar 

  • Chkhetiani OG (2001) On the helical structure of the Ekman boundary layer. Izvestiya Atmos Ocean Phys 37:569–575

    Google Scholar 

  • Clark AJ, Gallus WA Jr, Stensrud DJ, Weisman ML (2010) Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF model simulations and the operational NAM. Weather Forecast 25:1495–1509

    Article  Google Scholar 

  • Coniglio MC, Correia J, Marsh PT, Kong F (2013) Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Weather Forecast 28:842–862

    Article  Google Scholar 

  • Davies JM (1993) Hourly helicity, instability, and EHI in forecasting supercell tornadoes. Preprints. In: 17th Conference on severe local storms, Kansas City, MO, American Meteorological Society, 107–111

  • Deardorff JW (1972) Theoretical expression for the countergradient vertical heat flux. J Geophys Res 77:5900–5904

    Article  Google Scholar 

  • Derbyshire SH, Beau I, Bechtold P et al (2004) Sensitivity of moist convection to environmental humidity. Q J R Meteorol Soc 130:3055–3079

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Durran DR, Klemp JB (1982) On the effects of moisture on the Brunt Väisälä frequency. J Atmos Sci 39:2152–2158

  • Emanuel KA (1986) An air–sea interaction theory for tropical cyclones. Part I: steady state maintenance. J Atmos Sci 43:585–604

    Article  Google Scholar 

  • Emanuel KA (2003) A similarity hypothesis for air–sea exchange at extreme wind speeds. J Atmos Sci 60:1420–1428

    Article  Google Scholar 

  • Endlich RM, Ludwig FL, Uthe EE (1979) An automatic method for determining the mixing depth from lidar observations. Atmos Environ 13:1051–1056

    Article  Google Scholar 

  • Engeln A, Teixeira J (2013) A planetary boundary layer height climatology derived from ECMWF re-analysis data. J Clim 26:6575–6590

    Article  Google Scholar 

  • Etling D (1985) Some aspects of helicity in atmospheric flows. Beitr Phys Atmos 58:88–100

    Google Scholar 

  • García-Díez M, Fernandez J, Fita L, Yaguee C (2012) Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q J R Meteorol Soc 139:501–514

    Article  Google Scholar 

  • Gilliam RC, Pleim JE (2010) Performance assessment of new land surface and planetary boundary layer physics in the WRF-ARW. J Appl Meteorol Climatol 49:760–774

    Article  Google Scholar 

  • Hennemuth B, Lammert A (2006) Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Boundary-Layer Meteorol 120:181–200

    Article  Google Scholar 

  • Hide R (1989) Superhelicity, helicity and potential vorticity. Geophys Astrophys Fluid Dyn 48:69–79

    Article  Google Scholar 

  • Hong S-Y, Pan H-L (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124:2322–2339

    Article  Google Scholar 

  • Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parametrization of clouds and precipitation. Mon Weather Rev 132:103–120

    Article  Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Hong S-Y and Kim S-W (2008) Stable boundary layer mixing in a vertical diffusion scheme. Proc. Ninth Annual WRF User’s Workshop, Boulder, CO, National Center for Atmospheric Research (available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2008/abstracts/3-03.pdf)

  • Hu X-M, Doughty DC, Sanchez KJ, Joseph E, Fuentes JD (2012) Ozone variability in the atmospheric boundary layer in Maryland and its implications for vertical transport model. Atmos Environ 46:354–364

    Article  Google Scholar 

  • Hu X-M, Klein PM, Xue M, Zhang FQ, Doughty DC, Forkel R, Joseph E, Fuentes JD (2013a) Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration. Atmos Environ 70:123–130

    Article  Google Scholar 

  • Hu X-M, Klein PM, Xue M, Lundquist JK, Zhang F, Qi Y (2013b) Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma City. J Appl Meteorol Climatol 52:1779–1802

    Article  Google Scholar 

  • Hu X-M, Klein PM, Xue M (2013c) Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J Geophys Res 118:10490–10505

    Google Scholar 

  • Janssen P and Bidlot J-R (2003) Part VII: ECMWF wave-model documentation. IFS Documentation Cycle CY23R4, ECMWF, 46 pp

  • Kepert JD (2006a) Observed boundary layer wind structure and balance in the Hurricane core. Part I: Hurricane Georges. J Atmos Sci 63:2169–2193

  • Kepert JD (2006b) Observed boundary layer wind structure and balance in the Hurricane core. Part II: Hurricane Mitch. J Atmos Sci 63:2194–2211

  • Kepert JD (2010) Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: comparing the simulations. Q J R Meteorol Soc 136A:1686–1699

    Article  Google Scholar 

  • Konor CS, Boezio GC, Mechoso CR, Arakawa A (2009) Parametrization of PBL processes in an atmospheric general circulation model: description and preliminary assessment. Mon Weather Rev 137:1061–1082

    Article  Google Scholar 

  • Kuang Z, Bretherton C (2006) A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J Atmos Sci 63:1895–1909

    Article  Google Scholar 

  • Lataitis RJ, Clifford SF (1996) The effect of atmospheric turbulence on the spot size of a RASS echo: a calculation revisited. Radio Sci 31:1531–1540

    Article  Google Scholar 

  • Lee M-I, Schubert SD, Suarez MJ, Schemm J-KE, Pan H-L, Han J, Yoo S-H (2008) Role of convection triggers in the simulation of the diurnal cycle of precipitation over the United States Great Plains in a general circulation model. J Geophys Res 113:D02111

    Google Scholar 

  • Lorsolo S, Schroeder JL, Dodge P, Marks F (2008) An observational study of hurricane boundary layer small-scale coherent structures. Mon Weather Rev 136:2871–2893

    Article  Google Scholar 

  • Lorsolo S, Zhang JA, Marks FD, Gamache J (2010) Estimation and mapping of hurricane turbulent energy using airborne Doppler measurements. Mon Weather Rev 138:3656–3670

    Article  Google Scholar 

  • Ma L-M, Tan Z-M (2009) Improving the behavior of the cumulus parametrization for tropical cyclone prediction: convection trigger. Atmos Res 92:190–211

    Article  Google Scholar 

  • Ma L-M, Tan Z-M (2010) Tropical cyclone initialization with dynamical retrieval from a modified UWPBL model. J Meteorol Soc Jpn 88:827–846

    Article  Google Scholar 

  • McCaul EW Jr (1991) Buoyancy and shear characteristics of hurricane-tornado environments. Mon Weather Rev 119:1954–1978

    Article  Google Scholar 

  • Menut L, Flamant C, Pelon J, Flamant PH (1999) Urban boundary-layer height determination from Lidar measurements over the Paris area. Appl Opt 38:945–954

    Article  Google Scholar 

  • Ming J, Zhang JA, Rogers RF, Marks FD, Wang Y, Cai N (2014) Multiplatform observations of boundary layer structure in the outer rainbands of landfalling typhoons. J Geophys Res 119:7799–7814

    Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Moeng C-H, Stevens B, Sullivan PP (2005) Where is the interface of the stratocumulus-topped PBL? J Atmos Sci 62:2626–2631

    Article  Google Scholar 

  • Moffatt HK (1969) The degree of knottedness of tangled vortex lines. J Fluid Mech 35:117–129

    Article  Google Scholar 

  • Molinari J, Vollaro D (2008) Extreme helicity and intense convective towers in Hurricane Bonnie. Mon Weather Rev 136:4355–4372

    Article  Google Scholar 

  • Molinari J, Vollaro D (2010) Rapid intensification of a sheared tropical storm. Mon Weather Rev 138:3869–3885

    Article  Google Scholar 

  • Montgomery MT, Bell MM, Aberson S, Black M (2006) Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: mean vortex structure and maximum intensity estimate. Bull Am Meteorol Soc 87:1335–1347

    Article  Google Scholar 

  • Moon I-J, Ginis I, Hara T, Thomas B (2007) A physics-based parametrization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon Weather Rev 135:2869–2878

    Article  Google Scholar 

  • Nolan DS, Zhang JA, Stern DP (2009) Evaluation of planetary boundary layer parametrizations in tropical cyclones by comparison of in situ data and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and outer-core boundary layer structure. Mon Weather Rev 137:3651–3674

    Article  Google Scholar 

  • Powell MD (1980) Evaluations of diagnostic marine boundary layer models applied to hurricanes. Mon Weather Rev 108:757–766

    Article  Google Scholar 

  • Powell MD (1990) Boundary layer structure and dynamics in outer hurricane rainbands. Part II: downdraft modification and mixed layer recovery. Mon Weather Rev 118:918–938

    Article  Google Scholar 

  • Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283

    Article  Google Scholar 

  • Rasmussen EN, Blanchard DO (1998) A baseline climatology of sounding-derived supercell and tornado forecast parameters. Weather Forecast 13:1148–1164

    Article  Google Scholar 

  • Rogers RF, Black ML, Chen SS, Black RA (2007) An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: comparisons with Observations. J Atmos Sci 64:1811–1834

    Article  Google Scholar 

  • Schumacher RS, Clark AJ, Xue M, Kong F (2013) Factors influencing the development and maintenance of nocturnal heavy-rainproducing convective systems in a storm-scale ensemble. Mon Weather Rev 141:2778–2801

    Article  Google Scholar 

  • Schwendike J, Kepert JD (2008) The boundary layer winds in Hurricanes Danielle (1998) and Isabel (2003). Mon Weather Rev 136:3168–3192

    Article  Google Scholar 

  • Seibert P, Beyrich F, Gryning S-E et al (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027

    Article  Google Scholar 

  • Seidel DJ, Ao CO, Li K (2010) Estimating climatological planetary boundary layer heights from radiosonde observations: comparison of methods and uncertainty analysis. J Geophys Res 115:D16113

    Article  Google Scholar 

  • Sicard M, Pérez C, Rocadenbosch F, Baldasano JM, García-Vizcaino D (2006) Mixed-layer depth determination in the Barcelona coastal area from regular Lidar measurements: methods, Results and Limitations. Boundary-Layer Meteorol 119:135–157

    Article  Google Scholar 

  • Sitkowski M, Barnes GM (2009) Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon Weather Rev 137:645–663

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J et al (2008) A description of the advanced research WRF version 3. NCAR Tech. Note TN-475_STR, 113 pp

  • Smith RK (1968) The surface boundary layer of a hurricane. Tellus 20:473–483

    Article  Google Scholar 

  • Smith RK, Montgomery MT (2010) Hurricane boundary-layer theory. Q J R Meteorol Soc 136:1–6

    Google Scholar 

  • Smith RK, Thomsen GL (2010) Dependence of tropical-cyclone intensification on the boundary layer representation in a numerical model. Q J R Meteorol Soc 136A:1671–1685

    Article  Google Scholar 

  • Sorbjan Z (2009) Improving non-local parametrization of the convective boundary layer. Boundary-Layer Meteorol 130:57–69

    Article  Google Scholar 

  • Storm B, Basu S (2010) The WRF model forecast-derived low-level wind shear climatology over the United States Great Plains. Energies 3:258–276

    Article  Google Scholar 

  • Storm B, Dudhia J, Basu S et al (2009) Evaluation of the weather research and forecasting model on forecasting low-level jets: implications for wind energy. Wind Energy 12:81–90

    Article  Google Scholar 

  • Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp

  • Shin S-H, Ha K-J (2007) Effects of spatial and temporal variations in PBL depth on a GCM. J Clim 20:4717–4732

    Article  Google Scholar 

  • Shin HH, Hong SY (2011) Inter-comparison of planetary boundary layer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorol 139:261–281

    Article  Google Scholar 

  • Tan Z-M, Wu RS (1994) Helicity dynamics of atmospheric flow. Adv Atmos Sci 11:175–188

    Article  Google Scholar 

  • Thompson RL, Edwards R and Hart JA (2002) Evaluation and interpretation of the supercell composite and significant tornado parameters at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., J11–J14

  • Troen I, Mahrt L (1986) A simple model of the atmospheric boundary layer: sensitivity to surface evaporation. Boundary-Layer Meteorol 37:129–148

    Article  Google Scholar 

  • Vogelezang DHP, Holtslag AAM (1996) Evaluation and model impacts of alternative boundary-layer height formulations. Boundary-Layer Meteorol 81:245–269

    Article  Google Scholar 

  • Weisman ML, Klemp JB (1986) Characteristics of isolated convective storms. In: Ray P (ed) Mesoscale meteorology and forecasting. American Meteorological Society, Boston

    Google Scholar 

  • Wiegner M, Emeis S, Freudenthaler V, Heese B, Junkermann W, Munkel C, Schafer K, Seefeldner M, Vogt S (2006) Mixing layer height over Munich, Germany: variability and comparisons of different methodologies. J Geophys Res 111:D13201

    Article  Google Scholar 

  • Yu C-K, Cheng L-W (2013) Distribution and mechanisms of orographic precipitation associated with typhoon Morakot (2009). J Atmos Sci 70:2894–2915

    Article  Google Scholar 

  • Yver CE, Graven HD, Lucas DD, Cameron-Smith PJ, Keeling RF, Weiss RF (2013) Evaluating transport in the WRF model along the California coast. Atmos Chem Phys 13:1837–1852

    Article  Google Scholar 

  • Zhang JA, Drennan WM, Black PG, French JR (2009) Turbulence structure of the hurricane boundary layer between the outer rainbands. J Atmos Sci 66:2455–2467

    Article  Google Scholar 

  • Zhang JA, Rogers RF, Nolan DS, Marks FD Jr (2011) On the characteristic height scales of the hurricane boundary layer. Mon Weather Rev 139:2523–2535

    Article  Google Scholar 

  • Zhao K, Li X, Xue M, Jou BJ-D, Lee W-C (2012) Short-term forecasting through intermittent assimilation of data from Taiwan and mainland China coastal radars for Typhoon Meranti (2010) at landfall. J Geophys Res 117:D06108

    Google Scholar 

  • Zipser EJ (1977) Mesoscale and convective-scale downdrafts as distinct components of squall line circulation. Mon Weather Rev 105:1568–1589

    Article  Google Scholar 

Download references

Acknowledgments

This study was jointly supported by the grants of Chinese National 973 Projects (No. 2015CB452800; 2013CB430300), National Natural Science Foundation (No. 41475059), and the National Programme on Global Change and Air-Sea Interaction (GASI-IPOVAI-04). We greatly appreciate the efforts of three anonymous reviewers in reviewing our paper and providing valuable comments that led to substantial improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei-Ming Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, LM., Bao, XW. Parametrization of Planetary Boundary-Layer Height with Helicity and Verification with Tropical Cyclone Prediction. Boundary-Layer Meteorol 160, 569–593 (2016). https://doi.org/10.1007/s10546-016-0156-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0156-7

Keywords

Navigation