Skip to main content
Log in

Assessment of Planetary Boundary-Layer Schemes in the Weather Research and Forecasting Mesoscale Model Using MATERHORN Field Data

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The study was aimed at understanding the deficiencies of numerical mesoscale models by comparing predictions with a new high-resolution meteorological dataset collected during the Mountain Terrain Atmospheric Modelling and Observations (MATERHORN) Program. The simulations focussed on the stable boundary layer (SBL), the predictions of which continue to be challenging. High resolution numerical simulations (0.5-km horizontal grid size) were conducted to investigate the efficacy of six planetary boundary-layer (PBL) parametrizations available in the advanced research version of the Weather Research and Forecasting model. One of the commonly used PBL schemes was modified to include eddy diffusivities that account for enhanced momentum transport compared to heat transport in the SBL, representing internal wave dynamics. All of the tested PBL schemes, including the modified scheme, showed a positive surface temperature bias. None of the PBL schemes was found to be superior in predicting the vertical wind and temperature profiles over the lowest 500 m, however two of the schemes appeared superior in capturing the lower PBL structure. The lowest model layers appear to have a significant impact on the predictions aloft. Regions of sporadic flow interactions delineated by the MATERHORN observations were poorly predicted, given such interactions are not represented in typical PBL schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alapaty K, Pleim JE, Niyogi SR, Niyogi DS, Byun DW (1997) Simulation of atmospheric boundary layer processes using local and nonlocal-closure schemes. J Appl Meteorol 36:214–233

    Article  Google Scholar 

  • Argüeso D, Hidalgo-Mûnoz J, Gámiz-Fortis S, Esteban-Parra MJ, Dudhia J, Castro-Díez Y (2011) Evaluation of WRF parametrizations for climate studies over southern Spain using a multi-step regionalization. J Clim 24:5633–5651

    Article  Google Scholar 

  • Awan N, Truhetz H, Gobiet A (2011) Parametrization induced error characteristics of MM5 and WRF operated in climate mode over the Alpine region: an ensemble based analysis. J Clim 24(12):3107–3123

    Article  Google Scholar 

  • Borge R, Alexandrov V, del Vas JJ, Lumbreras J, Rodriguez E (2008) A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos Environ 42:8560–8574

    Article  Google Scholar 

  • Bougeault P, Lacarrere P (1989) Parametrization of orography-Induced turbulence in a mesobeta-scale model. Mon Weather Rev 117(8):1872–1890

    Article  Google Scholar 

  • Braun S, Tao W (2000) Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parametrizations. Mon Weather Rev 128(12):3941–3961

    Article  Google Scholar 

  • Bright DR, Mullen SL (2002) The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parametrization in MM5. Weather Forecast 17(1):99–114

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modelling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Deng A, Stauffer D (2006) On improving 4-km mesoscale model simulations. J Appl Meteorol 45(3):361–381

    Article  Google Scholar 

  • Doran JC, Fast JD, Horel J (2002) The VTMX 2000 campaign. Bull Am Meteorol Soc 83(4):537–551

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Evans J, Ekström M, Ji F (2011) Evaluating the performance of a WRF physics ensemble over south-east Australia. Climat Dyn 39:1241–1258

    Article  Google Scholar 

  • Fernández J, Montávez J, Sáenz J, González-Rouco J, Zorita E (2007) Sensitivity of the MM5 mesoscale model to physical parametrizations for regional climate studies: annual cycle. J Geophys Res 112(D04101) doi:10.1029/2005JD006649

  • Fernando HJS (2003) Turbulence patches in a stratified shear flow. Phys Fluids 15(10):3164–3169

    Article  Google Scholar 

  • Fernando HJS, Weil JC (2010) Whither the stable boundary layer? A shift in the research agenda. Bull Am Meteorol Soc 91(11):1475–1484

    Article  Google Scholar 

  • Fernando HJS, Pardyjak ER (2013) Field studies delve into the intricacies of mountain weather. EOS 94(36):313–315

    Article  Google Scholar 

  • Fernando HJS, Pardyjak ER, Di Sabatino S, Chow FK, DeWekker SFJ, Hoch SW, Hacker J, Pace JC, Pratt T, Pu Z, Steenburgh JW, Whiteman CD, Wang Y, Zajic D, Balsley B, Dimitrova R, Emmitt GD, Higgins CW, Hunt JCR, Knievel JG, Lawrence D, Liu Y, Nadeau DF, Kit E, Blomquist BW, Conry P, Coppersmith RS, Creegan E, Felton M, Grachev A, Gunawardena N, Hang C, Hocut CM, Huynh G, Jeglum ME, Jensen D, Kulandaivelu V, Lehner M, Leo LS, Liberzon D, Massey JD, McEnerney K, Pal S, Price T, Sghiatti M, Silver Z, Thompson M, Zhang H, Zsedrovits T (2015) The MATERHORN—unraveling the intricacies of mountain weather. BAMS http://journals.ametsoc.org/doi/pdf/10.1175/BAMS-D-13-00131.1 (early online release)

  • Flaounas E, Bastin S, Janicot S (2011) Regional climate modelling of the 2006 west african monsoon: sensitivity to convection and planetary boundary layer parameterisation using wrf. Climat Dyn 36(5):1083–1105

    Article  Google Scholar 

  • Fry J, Xian G, Jin S, Dewitz J, Homer C, Yang L, Barnes C, Herold N, Wickham J (2011) Completion of the 2006 national land cover database for the conterminous United States. Photogramm Eng Remote Sens 77:858–864

    Google Scholar 

  • Garcıa-Díez M, Fernandez J, Fita L, Yague C (2013) Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q J R Meteorol Soc 139(671):501–514

    Article  Google Scholar 

  • Grachev A, Leo LS, Di Sabatino S, Fernando HJS, Pardyjak E, Fairall CW (2015) Structure of turbulence in katabatic flows below and above the wind-speed maximum. Boundary-Layer Meteorol. doi:10.1007/s10546-015-0034-8 (early online release)

  • Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5), NCAR Technical Note: NCAR/TN-398+STR

  • Grisogono B, Oerlemans J (2001a) Katabatic flow: analytic solution for gradually varying eddy diffusivities. J Atmos Sci 58:3349–3354

    Article  Google Scholar 

  • Grisogono B, Oerlemans J (2001b) A theory for the estimation of surface fluxes in simple katabatic flows. Q J R Meteorol Soc 127:2725–2739

    Article  Google Scholar 

  • Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range Forecast model. Mon Weather Rev 124(10):2322–2339

    Article  Google Scholar 

  • Hong S, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341

    Article  Google Scholar 

  • Hu XM, Nielsen-Gammon JW, Zhang F (2010) Evaluation of three planetary boundary layer schemes in the WRF model. J Appl Meteorol Climatol 49:1831–1844

    Article  Google Scholar 

  • Hunt JCR (1985) Diffusion in the stably stratified atmospheric boundary layer. J Clim Appl Meteorol 24:1187–1195

    Article  Google Scholar 

  • Janjic Z (1990) The step-mountain coordinate: physics package. Mon Weather Rev 118:1429–1443

    Article  Google Scholar 

  • Janjic ZI (1994) The step-mountain eta coordinate model: further development of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Janjic ZI (2002) Nonsingular implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso model, NCEP Office Note No 437

  • Jankov I, Anderson CJ, Koch SE (2007) The impact of different physical parametrizations and their interactions on cold season QPF in the American River Basin. J Hydrometeorol 8:1141–1151

    Article  Google Scholar 

  • Jeriĉević A, Grisogono B (2006) The critical bulk Richardson number in urban areas: verification and application in a numerical weather prediction model. Tellus 58(1):19–27

    Article  Google Scholar 

  • Jiménez PA, Dudhia J (2012) Improving the representation of resolved and unresolved topographic effects on surface wind in the wrf model. J Appl Meteorol Climatol 51(2):300–316

    Article  Google Scholar 

  • Jiménez PA, Dudhia J, Gonzalez-Rouco JF, Navarro J, Montavez JP, Garcia-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140:898–918

    Article  Google Scholar 

  • Kleczek M, Steeneveld GJ, Holtstag AAM (2014) Evaluation of the weather research and forecasting mesoscale model for GABLS3: impact of boundary-layer schemes, boundary conditions and spin-up. Boundary-Layer Meteorol 152:213–243

    Article  Google Scholar 

  • Lee SM, Fernando HJS (2004) Evaluation of meteorological models MM5 and HOTMAC using PAFEX-I data. J Appl Meteorol 43(8):1133–1148

    Article  Google Scholar 

  • Lee SM, Giori W, Princevac M, Fernando HJS (2006) Implementation of a stable PBL turbulence parametrization for the mesoscale model MM5: nocturnal flow in complex terrain. Boundary-Layer Meteorol 119:109–134

    Article  Google Scholar 

  • Legates DR, McCabe GJ Jr (1999) Evaluating the use of “Goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241

    Article  Google Scholar 

  • LeMone MA, Tewari M, Chen F, Dudhia J (2013) Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations. Mon Weather Rev 141(1):30–54

    Article  Google Scholar 

  • Li X, Pu Z (2008) Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parametrization. Mon Weather Rev 136:4819–4838

    Article  Google Scholar 

  • Lin YL, Farley RD, Orville HD (1983) Bulk parametrization of the snow field in a cloud model. J Appl Meteorol 22:1065–1092

    Article  Google Scholar 

  • Massey J, Steenburgh WJ, Hoch SW, Knievel JC (2013) Sensitivity of near-surface temperature forecasts to soil properties over a sparsely vegetated dryland region. J Appl Meteorol Climatol 53(8):1976–1995

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90:375–396

    Article  Google Scholar 

  • Mahrt L (2007) Bulk formulation of the surface fluxes extended to weak-wind stable conditions. Q J R Meteorol Soc 134(630):1–10

    Article  Google Scholar 

  • Mahrt L (2010) Commonmicrofronts and other solitary events in the nocturnal boundary layer. Q J R Meteorol Soc 136:1712–1722

    Article  Google Scholar 

  • Mahrt L, Richardson S, Seaman N, Stauffer D (2012) Turbulence in the nocturnal boundary layer with light and variable winds. Q J R Meteorol Soc 138:1430–1439

    Article  Google Scholar 

  • Mellor G, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20(4):851–875

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102(14):16663–16682

    Article  Google Scholar 

  • Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the atmospheric surface layer. Trudy Geofizicheskogo Instituta Akademiya Nauk SSSR 24:163–187

    Google Scholar 

  • Monin A, Yaglom A (1965) Statistical fluid mechanics. In: Mechanics of turbulence, vol 1 (Translated from the Russian by Scripta Technica, Inc). MIT Press, Cambridge, 770 pp

  • Monti P, Fernando HJS, Princevac M, Chan WC, Kowalewski TA, Pardyjak ER (2002) Observations of flow and turbulence in the nocturnal boundary layer over a slope. J Atmos Sci 59:2513–2534

    Article  Google Scholar 

  • Nakanishi M, Nino H (2006) An improved Mellor\(\_\)Yamada level-3 model: its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorol 119:397–407

    Article  Google Scholar 

  • Otkin J, Greenwald T (2008) Comparison of WRF model-simulated and MODIS-derived cloud data. Mon Weather Rev 136(6):1957–1970

    Article  Google Scholar 

  • Pearson HJ, Puttock JS, Hunt JCR (1983) A statistical model of fluid element motions and vertical diffusion in a homogeneous stratified turbulent flow. J Fluid Mech 129:219

    Article  Google Scholar 

  • Pleim JE (2006) A simple, efficient solution of flux-profile relationships in the atmospheric surface layer. J Appl Meteorol Climatol 45(2):341–347

    Article  Google Scholar 

  • Pleim JE (2007a) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing. J Appl Meteorol Climatol 46(9):1383–1395

    Article  Google Scholar 

  • Pleim JE (2007b) A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: application and evaluation in a mesoscale meteorological model. J Appl Meteorol Climatol 46(9):1396–1409

    Article  Google Scholar 

  • Princevac M, Hunt JCR, Fernando HJS (2008) Quasi-steady katabatic winds over long slopes in wide valleys. J Atmos Sci 65:627–643

    Article  Google Scholar 

  • Reeves HD, Stensrud DJ (2009) Synoptic-scale flow and valley cold pool evolution in the western United States. Weather Forecast 24:1625–1643

    Article  Google Scholar 

  • Rife DL, Warner TT, Chen F, Astling EG (2002) Mechanisms for diurnal boundary layer circulations in the Great Basin Desert. Mon Weather Rev 130:921–938

    Article  Google Scholar 

  • Shin HH, Hong SY (2011) Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorol 139:261–281

    Article  Google Scholar 

  • Stensrud D, Weiss S (2002) Mesoscale model ensemble forecasts of the 3 May 1999 tornado outbreak. Weather Forecast 17(3):526–543

    Article  Google Scholar 

  • Strang EJ, Fernando HJS (2001a) Entrainment and mixing in stratified shear flows. J Fluid Mech 428:349–386

    Article  Google Scholar 

  • Strang EJ, Fernando HJS (2001b) Vertical mixing and transports through a stratified shear layer. J Phys Oceanogr 31:2026–2048

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

  • Sukoriansky S, Galperin B, Perov V (2005) Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Boundary-Layer Meteorol 117(2):231–257

    Article  Google Scholar 

  • Sukoriansky S (2008) Implementation of the quasi-normal scale elimination (QNSE) model of stably stratified turbulence in WRF, Report on WRF-DTC Visit. http://www.dtcenter.org/visitors/reports_07/Sukoriansky_report.pdf. Accessed 08 Nov 2014

  • Tastula EM, Galperin B, Sukoriansky S, Luhar A, Anderson P (2015a) The importance of surface layer parametrization in modeling of stable atmospheric boundary layers. Atmos Sci Let 16:83–88

    Article  Google Scholar 

  • Tastula EM, Galperin B, Dudhia J, LeMone MA, Sukoriansky S, Vihma T (2015b) Methodical assessment of the differences between the QNSE and MYJ PBL schemes for stable conditions. Q J R Meteorol Soc. doi:10.1002/qj.2503

  • Wagner J, Gohm A, Rotach M (2014) The impact of horizontal model grid resolution on the boundary layer structure over an idealized valley. Mon Weather Rev 142:3446–3465

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Google Scholar 

  • Zardi D, Whiteman CD (2013) Mountain weather research and forecasting, recent progress and current challenges. In: Chow FK, De Wekker SFJ, Snyder BJ (eds) Diurnal mountain wind systems, Chapter 2, Springer, Dordrecht, pp 35–121

  • Zhang D, Anthes RA (1982) A high-resolution model of the planetary boundary layer–sensitivity tests and comparison with SESAME-79 data. J Appl Meteorol 21:1594–1609

    Article  Google Scholar 

  • Zhang D, Zheng W (2004) Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parametrizations. J Appl Meteorol 43(1):157–169

    Article  Google Scholar 

  • Zhang H, Pu Z, Zhang X (2013) Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Weather Forecast 28(3):893–914

    Article  Google Scholar 

  • Zhong S, Fast J (2003) An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using VTMX field campaign data in the Salt Lake Valley. Mon Weather Rev 131:1301–1322

    Article  Google Scholar 

  • Zilitinkevich S, Calanca P (2000) An extended theory for the stably stratified atmospheric boundary layer. Q J R Meteorol Soc 126:1913–1923

    Article  Google Scholar 

  • Zilitinkevich S, Baklanov A, Rost J, Smedman AS, Lykosov V, Calanca P (2002) Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Q J R Meteorol Soc 128:25–46

    Article  Google Scholar 

  • Zilitinkevich S, Esau I (2007) Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 125:193–205

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the US Office of Naval Research Award # N00014-11-1-0709, Mountain Terrain Atmospheric Modelling and Observations (MATERHORN) Program. It has also been supported by the European Union and the State of Hungary in the framework of TÁMOP-4.2.1.B-11/2/KMR-2011-0002 Instrument. Additional support was provided by the University of Notre Dame’s Centre for Research Computing through computational and storage resources (we specifically acknowledge the assistance of Dodi Heryadi). Furthermore, we are thankful to Jeffrey Massey from the University of Utah for the updated land-cover and soil data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reneta Dimitrova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitrova, R., Silver, Z., Zsedrovits, T. et al. Assessment of Planetary Boundary-Layer Schemes in the Weather Research and Forecasting Mesoscale Model Using MATERHORN Field Data. Boundary-Layer Meteorol 159, 589–609 (2016). https://doi.org/10.1007/s10546-015-0095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0095-8

Keywords

Navigation